×

zbMATH — the first resource for mathematics

Nonequilibrium statistical thermodynamics of displacement cascade thermalization in a solid. (English. Russian original) Zbl 1189.82093
Theor. Math. Phys. 87, No. 2, 532-539 (1991); translation from Teor. Mat. Fiz. 87, No. 2, 283-292 (1991).
Summary: The thermalization of a low-energy displacement cascade in a solid is investigated in the framework of nonequilibrium statistical thermodynamics. The equation of the time evolution of the quasitemperature of the cascade particles is derived with allowance for inelastic scattering and also recombination of Frenkel’ defects. This equation is solved for some definite energy dissipation mechanisms.
MSC:
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
82D20 Statistical mechanical studies of solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Seits and J. S. Kochler, Solid State Phys.,2, 305 (1956).
[2] V. F. Krasnoshtanov and V. V. Kolomytkin, Preprint IAÉ-2244 [in Russian], Institute of Atomic Energy, Moscow (1972).
[3] V. I. Protasov and V. G. Chudinov, Radiat. Eff.,66, 1 (1982). · doi:10.1080/00337578208211468
[4] V. V. Gann and I. G. Marchenko, Voprosy Atom. Nauki i Tekh..2(40),61, (1982).
[5] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, Plenum, New York (1974).
[6] R. Kelly, Radiat. Eff.,32, 91 (1977). · doi:10.1080/00337577708237462
[7] H. Blank, Phys. Status Solidi,10, 465 (1972). · doi:10.1002/pssa.2210100215
[8] R. Chang, Acta Met.,5, 275 (1957). · doi:10.1016/0001-6160(57)90101-3
[9] H. M. Naguib and R. Kelly, Radiat. Eff.,25, 4 (1975).
[10] N. N. Bogolyubov (Jr.) and B. I. Sadovnikov, Some Problems of Statistical Mechanics [in Russian], Vysshaya Shkola, Moscow (1975).
[11] I. A. Akhiezer and L. N. Davydov, Introduction to Theoretical Radiation Physics of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1985).
[12] Yu. A. Kashlev and I. N. Shemaeva, Modelirovanie v Mekhanike,2(19), 86 (1988).
[13] A. J. C. Sampaio and R. Lussi, Phys. Chem. Solids,44, 479 (1983). · doi:10.1016/0022-3697(83)90035-5
[14] J. Hubbard, Proc. R. Soc. London, Ser. A,243, 336 (1957).
[15] M. Kitagawa and V. H. Ohtsuki, Phys. Rev. B,9, 4719 (1974). · doi:10.1103/PhysRevB.9.4719
[16] W. G. Wolfer and A. Si-Ahmed, J. Nucl. Mater.,99, 117 (1981). · doi:10.1016/0022-3115(81)90145-8
[17] J. D. Eshebby, Solid State Phys.,3, 79 (1956). · doi:10.1016/S0081-1947(08)60132-0
[18] G. N. Kinchin and R. S. Piz, Usp. Fiz. Nauk,60, 590 (1956).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.