zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A geometric approach for reachability and observability of linear switched impulsive systems. (English) Zbl 1189.93021
Summary: This paper is concerned with the reachability and observability of linear switched impulsive systems with singular impulse matrices. First some new concepts with respect to the reachability and unobservability are introduced. Especially, span reachability is proposed because the reachable sets of switched impulsive systems do not always constitute subspaces. Then the geometric characterization of the span reachable and unobservable sets is presented. Moreover, the relations between the span reachable set, unobservable set and the invariant subspaces of such systems are discussed. Finally, corresponding criteria applied to linear impulsive systems and linear switched systems are also discussed.

93B03Attainable sets
93C05Linear control systems
93B27Geometric methods in systems theory
34H05ODE in connection with control problems
Full Text: DOI
[1] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[2] Benchohra, M.; Henderson, J.; Ntouyas, S. K.: Impulsive differential equations and inclusions, Contemporary mathematics and its applications 2 (2006) · Zbl 1130.34003
[3] Zavalishchin, S. T.; Sesekin, A. N.: Dynamic impulse systems. Theory and applications, Mathematics and its applications (1997) · Zbl 0880.46031
[4] Sun, J. T.; Zhang, Y. P.; Wu, Q. D.: Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans. Automat. control 48, 829-831 (2003)
[5] Zhang, H.; Chen, L. S.; Nieto, J. J.: A delayed epidemic model with stage structure and pulses for management strategy, Nonlinear anal.: real world appl. 9, 1714-1726 (2008) · Zbl 1154.34394 · doi:10.1016/j.nonrwa.2007.05.004
[6] Dong, Y. W.; Sun, J. T.: On hybrid control of a class of stochastic non-linear Markovian switching systems, Automatica 44, 990-995 (2008) · Zbl 1283.93251
[7] Chang, Y. -K.; Li, W. T.; Nieto, J. J.: Controllability of evolution differential inclusions in Banach spaces, Nonlinear anal. 67, 623-632 (2007) · Zbl 1128.93005 · doi:10.1016/j.na.2006.06.018
[8] Mahmudov, N. I.: Approximate controllability of evolution systems with nonlocal conditions, Nonlinear anal.: TMA 68, 536-546 (2008) · Zbl 1129.93004 · doi:10.1016/j.na.2006.11.018
[9] Beck, C.; D’andrea, R.: Noncommuting multidimen-sional realization theory: minimality, reachability, and observability, IEEE trans. Automat. control 49, 1815-1820 (2004)
[10] D’alessandro, P.; Isidori, A.; Ruberti, A.: Realization and structure theory of bilinear dynamical systems, SIAM J. Control 12, 517-535 (1974) · Zbl 0254.93008 · doi:10.1137/0312040
[11] Obukhovski, V.; Zecca, P.: Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear anal.: TMA 70, 3424-3436 (2009) · Zbl 1157.93006 · doi:10.1016/j.na.2008.05.009
[12] R. D’Andrea, S. Khatri, Kalman decomposition of linear fractional transformation representations and minimality, in: Proc. Amer. Control Conf. 1997, pp. 3557--3561.
[13] Isidori, A.: Direct construction of minimal bilinear realizations from nonlinear input--output maps, IEEE trans. Automat. control 18, 626-631 (1973) · Zbl 0273.93004 · doi:10.1109/TAC.1973.1100424
[14] Lei, P. D.; Li, Y. B.; Lin, P.: Null controllability for a semilinear parabolic equation with gradient quadratic growth, Nonlinear anal.: TMA 68, 73-82 (2008) · Zbl 1133.35015 · doi:10.1016/j.na.2006.10.032
[15] Chang, Y. K.; Nieto, J. J.; Li, W. S.: Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. optim. Theory appl. 142, 267-273 (2009) · Zbl 1178.93029 · doi:10.1007/s10957-009-9535-2
[16] Guan, Z. H.; Qian, T. H.; Yu, X. H.: Controllability and observability of linear time-varying impulsive systems, IEEE trans. Circuits syst.-I 49, 1198-1208 (2002)
[17] Zhao, S. W.; Sun, J. T.: Controllability and observability for a class of time-varying impulsive systems, Nonlinear anal.: real world appl. 10, 1370-1380 (2009) · Zbl 1159.93315 · doi:10.1016/j.nonrwa.2008.01.012
[18] Sakthivel, R.; Mahmudov, N. I.; Nieto, J. J.; Kim, J. H.: On controllability of nonlinear impulsive integrodifferential systems, Dyn. contin. Discrete impulsive syst. Ser. A: math. Anal. 15, 333-343 (2008) · Zbl 1147.93010
[19] Sakthivel, R.; Mahmudov, N. I.; Kim, J. H.: On controllability of second order nonlinear impulsive differential systems, Nonlinear anal.: TMA 71, 45-52 (2009) · Zbl 1177.34080 · doi:10.1016/j.na.2008.10.029
[20] Abada, N.; Benchohra, M.; Hammouche, H.: Existence and controllability results for impulsive partial functional differential inclusions, Nonlinear anal.: TMA 69, 2892-2909 (2008) · Zbl 1160.34068 · doi:10.1016/j.na.2007.08.060
[21] E.A. Medina, Linear Impulsive Control Systems: A Geometric Approach, Ph.D. Dissertation, Ohio University, School of Electrical Engineering and Computer Science, 2007.
[22] Medina, E. A.; Lawrence, D. A.: Reachability and ob-servability of linear impulsive systems, Automatica 44, 1304-1309 (2008) · Zbl 1283.93050
[23] Yan, Z. B.: Geometric analysis of impulse controllability for descriptor system, Syst. control lett. 56, 1-6 (2007) · Zbl 1120.93010 · doi:10.1016/j.sysconle.2006.07.003
[24] Basile, G.; Marro, G.: Controlled and conditioned invariants in linear systems theory, (1992) · Zbl 0758.93002
[25] Fuhrmann, P. A.; Helmke, U.: On the parametrization of conditioned invariant subspaces and observer theory, Linear algebra appl. 332--334, 265-353 (2001) · Zbl 1031.93062 · doi:10.1016/S0024-3795(01)00248-8
[26] Sun, Z. D.; Ge, S. S.; Lee, T. H.: Controllability and reachability criteria for switched linear systems, Automatica 38, 775-786 (2002) · Zbl 1031.93041 · doi:10.1016/S0005-1098(01)00267-9
[27] Xie, G. M.; Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE trans. Automat. control 49, 960-966 (2004)
[28] Lin, H.; Antsaklis, P. J.: Switching stabilizability for continuous-time uncertain switched linear systems, IEEE trans. Automat. control 52, 633-646 (2007)
[29] Sun, X. M.; Zhao, J.; Hill, D. J.: Stability and L2-gain analysis for switched delay systems: A delay-dependent method, Automatica 42, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[30] Zhai, G. S.; Lin, H.; Xu, X. P.; Imae, J.; Kobayashi, T.: Analysis of switched normal discrete-time systems, Nonlinear anal.: TMA 66, 1788-1799 (2007) · Zbl 1110.93035 · doi:10.1016/j.na.2006.02.024
[31] Zhao, J.; Hill, D. J.: On stability, L2-gain and H$\infty $control for switched systems, Automatica 44, 1220-1232 (2008) · Zbl 1283.93147
[32] Sun, Z. D.: Reachability analysis of constrained switched linear systems, Automatica 43, 164-167 (2007) · Zbl 1140.93321 · doi:10.1016/j.automatica.2006.07.016
[33] Petreczky, M.: Reachability of linear switched systems: differential geometric approach, Syst. control lett. 55, 112-118 (2006) · Zbl 1129.93446 · doi:10.1016/j.sysconle.2005.06.001
[34] Xie, G. M.; Wang, L.: Controllability and stabilizability of switched linear-systems, Syst. control lett. 48, 135-155 (2003) · Zbl 1134.93403 · doi:10.1016/S0167-6911(02)00288-8
[35] D.Z. Cheng, Global controllability of switched nonlinear systems, in: Proc. 45th IEEE Conf. Decision and Control, 2006, pp. 3742--3747.
[36] Li, Z. G.; Soh, Y. C.; Wen, C. Y.: Switched and impulsive systems analysis, design, and applications, (2005) · Zbl 1060.93004