zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalised filtering. (English) Zbl 1189.94032
Summary: We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional) densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model’s log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

94A12Signal theory (characterization, reconstruction, filtering, etc.)
93E11Filtering in stochastic control
62M10Time series, auto-correlation, regression, etc. (statistics)
92C50Medical applications of mathematical biology
Full Text: DOI EuDML
[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002. · doi:10.1109/78.978374
[2] R. var der Merwe, A. Doucet, N. de Freitas, and E. Wan, “The unscented particle filter,” Tech. Rep. CUED/F-INFENG/TR 380, 2000.
[3] K. J. Friston, “Variational filtering,” NeuroImage, vol. 41, no. 3, pp. 747-766, 2008. · doi:10.1016/j.neuroimage.2008.03.017
[4] K. J. Friston, N. Trujillo-Barreto, and J. Daunizeau, “DEM: a variational treatment of dynamic systems,” NeuroImage, vol. 41, no. 3, pp. 849-885, 2008. · doi:10.1016/j.neuroimage.2008.02.054
[5] J. Daunizeau, K. J. Friston, and S. J. Kiebel, “Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models,” Physica D, vol. 238, no. 21, pp. 2089-2118, 2009. · Zbl 1229.62027 · doi:10.1016/j.physd.2009.08.002
[6] G. L. Eyink, J. M. Restrepo, and F. J. Alexander, “A mean field approximation in data assimilation for nonlinear dynamics,” Physica D, vol. 195, no. 3-4, pp. 347-368, 2004. · Zbl 1081.82019 · doi:10.1016/j.physd.2004.04.003
[7] C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor, “Gaussian process approximations of stochastic differential equations,” in Proceedings of the Journal of Machine Learning Research Workshop and Conference, vol. 1, pp. 1-16, October 2007.
[8] B. Balaji, “Continuous-discrete path integral filtering,” Entropy, vol. 11, no. 3, pp. 402-430, 2009. · Zbl 1179.35329 · doi:10.3390/e110300402
[9] V. A. Billock, G. C. de Guzman, and J. A. Scott Kelso, “Fractal time and 1/f spectra in dynamic images and human vision,” Physica D, vol. 148, no. 1-2, pp. 136-146, 2001. · Zbl 1098.92510 · doi:10.1016/S0167-2789(00)00174-3
[10] J. Carr, Applications of Centre Manifold Theory, vol. 35 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1981. · Zbl 0464.58001
[11] M. J. Beal and Z. Ghahramani, “The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures,” in Bayesian Statistics, J. M. Bernardo, M. J. Bayarri, J. O. Berger, et al., Eds., chapter 7, Oxford University Press, Oxford, UK, 2003.
[12] G. V. Puskorius and L. A. Feldkamp, “Decoupled extended Kalman filter training of feedforward layered networks,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN ’91), vol. 1, pp. 771-777, 1991.
[13] K. Friston, “Hierarchical models in the brain,” PLoS Computational Biology, vol. 4, no. 11, Article ID e1000211, 24 pages, 2008. · doi:10.1371/journal.pcbi.1000211
[14] P. Whittle, “Likelihood and cost as path integrals,” Journal of the Royal Statistical Society. Series B, vol. 53, no. 3, pp. 505-538, 1991. · Zbl 0800.62539
[15] G. L. Eyink, “Action principle in nonequilibrium statistical dynamics,” Physical Review E, vol. 54, no. 4, part A, pp. 3419-3435, 1996. · doi:10.1103/PhysRevE.54.3419
[16] G. E. Hinton and D. van Camp, “Keeping neural networks simple by minimising the description length of weights,” in Proceedings of the 6th ACM Conference on Computational Learning Theory (COLT ’93), pp. 5-13, Santa Cruz, Calif, USA, July 1993.
[17] D. J. C. MacKay, “Free energy minimisation algorithm for decoding and cryptanalysis,” Electronics Letters, vol. 31, no. 6, pp. 446-447, 1995. · doi:10.1049/el:19950331
[18] G. L. Eyink, “A variational formulation of optimal nonlinear estimation,” Tech. Rep. LA-UR00-5264, University of Arizona, 2001, http://arxiv.org/abs/physics/0011049. · Zbl 0996.76009
[19] W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, “Comparing dynamic causal models,” NeuroImage, vol. 22, no. 3, pp. 1157-1172, 2004. · doi:10.1016/j.neuroimage.2004.03.026
[20] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Methuen, London, UK, 1965. · Zbl 0149.12902
[21] B. Efron and C. Morris, “Stein’s estimation rule and its competitors-an empirical Bayes approach,” Journal of the American Statistical Association, vol. 68, pp. 117-130, 1973. · Zbl 0275.62005 · doi:10.2307/2284155
[22] R. E. Kass and D. Steffey, “Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models),” Journal of the American Statistical Association, vol. 84, no. 407, pp. 717-726, 1989. · doi:10.2307/2289653
[23] S. Zeki, J. D. G. Watson, C. J. Lueck, K. J. Friston, C. Kennard, and R. S. J. Frackowiak, “A direct demonstration of functional specialization in human visual cortex,” Journal of Neuroscience, vol. 11, no. 3, pp. 641-649, 1991.
[24] R. B. Buxton, K. Uluda?, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, vol. 23, supplement 1, pp. S220-S233, 2004. · doi:10.1016/j.neuroimage.2004.07.013
[25] J. J. Riera, J. Watanabe, I. Kazuki, et al., “A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals,” NeuroImage, vol. 21, no. 2, pp. 547-567, 2004. · doi:10.1016/j.neuroimage.2003.09.052
[26] R. C. Sotero and N. J. Trujillo-Barreto, “Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism,” NeuroImage, vol. 39, no. 1, pp. 290-309, 2008. · doi:10.1016/j.neuroimage.2007.08.001
[27] R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magnetic Resonance in Medicine, vol. 39, no. 6, pp. 855-864, 1998. · doi:10.1002/mrm.1910390602
[28] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273-1302, 2003. · doi:10.1016/S1053-8119(03)00202-7
[29] K. J. Friston and S. J. Kiebel, “Attractors in song,” New Mathematics and Natural Computation, vol. 5, no. 1, pp. 83-114, 2009. · Zbl 1163.92005 · doi:10.1142/S1793005709001209
[30] T. Ozaki, “A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach,” Statistica Sinica, vol. 2, no. 1, pp. 113-135, 1992. · Zbl 0820.62075