zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Criteria for spectral gaps of Laplacians on fractals. (English) Zbl 1190.28005
Author’s abstract: Surprisingly, Fourier series on certain fractals can have better convergence properties than classical Fourier series. This is a result of the existence of gaps in the spectrum of the Laplacian. In this work we prove general criteria for the existence of gaps when the Laplacian admits spectral decimation. The known examples, including the Sierpinski gasket and the level-3 Sierpinski gasket, and the new examples including the fractal-3 tree, the Hexagasket and the infinite family of tree-like fractals satisfy the criteria.

42C99Non-trigonometric Fourier analysis
31C25Dirichlet spaces
Full Text: DOI
[1] Adams, B., Smith, S.A., Strichartz, R., Teplyaev, A.: The Spectrum of the Laplacian on the Pentagasket. Trends in Mathematics, Fractals in Graz 2001. Birkhauser, Basel (2003), pp. 1--24 · Zbl 1037.31010
[2] Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration modes of 3n-gaskets and other fractals. J. Phys. A: Math. Theor. 41 (2008) · Zbl 1181.28007
[3] Barlow, M.: Diffusion on Fractals. Lecture Notes Math., vol. 1690. Springer, Berlin (1998) · Zbl 0916.60069
[4] Barlow, M., Perkins, E.: Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields 79, 543--623 (1988) · Zbl 0635.60090 · doi:10.1007/BF00318785
[5] Drenning, S.: Fractal analysis: Extending the domain. Cornell Univ. Math. Dept. Senior Thesis (2005)
[6] Drenning, S., Strichartz, R.: Spectral decimation on Hambly’s homogeneous hierarchical gaskets. Preprint · Zbl 1211.28005
[7] Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel type estimates and sharp spectral multipliers. J. Funct. Anal. Appl. 196, 443--485 (2002) · Zbl 1029.43006 · doi:10.1016/S0022-1236(02)00009-5
[8] Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. Potential Anal. 1, 1--35 (1992) · Zbl 1081.31501 · doi:10.1007/BF00249784
[9] Gibbons, M., Raj, A., Strichartz, R.: The finite element method on the Sierpinski gasket. Constr. Approx. 17, 561--588 (2001) · Zbl 0991.28007 · doi:10.1007/s00365-001-0010-z
[10] Hambly, B., Kumagai, T.: Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. Lond. Math. Soc. 78, 431--458 (1999) · Zbl 1027.60087 · doi:10.1112/S0024611599001744
[11] Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335, 721--755 (1993) · Zbl 0773.31009 · doi:10.2307/2154402
[12] Kigami, J.: Analysis on Fractals. Cambridge Univ. Press, New York (2001) · Zbl 0998.28004
[13] Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 158, 93--125 (1993) · Zbl 0806.35130 · doi:10.1007/BF02097233
[14] Malozemov, L., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6, 201--218 (2003) · Zbl 1021.05069 · doi:10.1023/A:1024931603110
[15] Milnor, J.: Dynamics in one Complex Variable, 3rd edn. Princeton Univ. Press, New Jersey (2006) · Zbl 1085.30002
[16] Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Jpn. J. Ind. Appl. Math. 13, 1--23 (1996) · Zbl 0861.58047 · doi:10.1007/BF03167295
[17] Strichartz, R.: Laplacians on fractals with spectral gaps have nicer Fourier series. Math. Res. Lett. 12, 269--274 (2005) · Zbl 1070.42002
[18] Strichartz, R.: Differential Equations on Fractals: A Tutorial. Princeton Univ. Press, New Jersey (2006) · Zbl 1190.35001
[19] Teplyaev, A.: Spectral analysis on infinite Sierpinski gasket. J. Funct. Anal. 159, 537--567 (1998) · Zbl 0924.58104 · doi:10.1006/jfan.1998.3297
[20] Zhou, D.: Spectral analysis of Laplacians on the Vicsek set. Pac. J. Math. 241(2), 369--398 (2009) · Zbl 1177.28029 · doi:10.2140/pjm.2009.241.369