zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fredholm’s boundary-value problems for differential systems with a single delay. (English) Zbl 1190.34073
Summary: Conditions are derived for the existence of solutions of linear Fredholm’s boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay. Utilizing a delayed matrix exponential and a method of pseudo-inverse by Moore-Penrose matrices led to an explicit and analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a differential system with a single delay.

34K10Boundary value problems for functional-differential equations
Full Text: DOI
[1] Azbelev, N. V.; Maksimov, V. P.: Equations with delayed arguments. (English. Russian original), Differ. equ. 18, 1419-1441 (1983) · Zbl 0513.34003
[2] Boichuk, A. A.; Grammatikopoulos, M. K.: Perturbed Fredholm boundary value problems for delay differential systems, Abstr. appl. Anal., No. 15, 843-864 (2003) · Zbl 1077.34069 · doi:10.1155/S1085337503304026
[3] Boichuk, A. A.; Samoilenko, A. M.: Generalized inverse operators and Fredholm boundary value problems, (2004) · Zbl 1083.47003
[4] Hale, J.: Theory of functional differential equations, Applied mathematical sciences 3, 365 (1977) · Zbl 0352.34001
[5] Mallet-Paret, J.: The Fredholm alternative for functional--differential equations of mixed type, J. dynam. Differential equations 11, No. 1, 1-47 (1999) · Zbl 0927.34049 · doi:10.1023/A:1021889401235
[6] Khusainov, D. Ya.; Shuklin, G. V.: Relative controllability in systems with pure delay. (English. Russian original), Internat. appl. Mech. 41, No. 2, 210-221 (2005) · Zbl 1100.34062 · doi:10.1007/s10778-005-0079-3
[7] F.R. Gantmacher, The Theory of Matrices. Vol. 1. Transl. from the Russian by K.A. Hirsch. Reprint of the 1959 translation. (English), Providence, RI, AMS Chelsea Publishing, 374 p. (1998), Vol. 2. Transl. from the Russian by K.A. Hirsch. Reprint of the 1959 translation. (English) Providence, RI, AMS Chelsea Publishing, 276 p. (1998) · Zbl 0927.15002
[8] El’sgol’ts, L. E.; Norkin, S. B.: Introduction to the theory of differential equations with deviating argument (Vvedenie v teoriyu differentsial’nykh uravnenij s otklonyayushchimsya argumentom), (1971) · Zbl 0224.34053
[9] Diblík, J.; Khusainov, D. Ya.; Lukáčová, J.; Ružičková, M.: Representation of a solution of the Cauchy problem for an oscillating system with pure delay. (English. Russian original), Nonlinear oscil. (NY) 11, No. 2, 276-285 (2008) · Zbl 1276.34055
[10] Berezansky, L.; Braverman, E.: Global linearized stability theory for delay differential equations, Nonlinear anal. 71, No. 7, 8, 2614-2624 (2009) · Zbl 1208.34115 · doi:10.1016/j.na.2009.01.147
[11] Diblík, J.; Khusainov, Denys Ya.; Ružičková, M.: Controllability of linear discrete systems with constant coefficients and pure delay, SIAM J. Control optim. 47, No. 3, 1140-1149 (2008) · Zbl 1161.93004 · doi:10.1137/070689085
[12] Ya. Goltser, A. Domoshnitsky, Singular perturbed integro--differential Volterra equation and Drazins inverse singular matrices. Nonlinear Anal., in press (doi:10.1016/j.na.2009.02.048). Corrected proof, Available online 13 February 2009 · Zbl 1238.45006
[13] Hanuštiaková, L.; Olach, R.: Nonoscillatory bounded solutions of neutral differential systems, Nonlinear anal. 68, No. 7, 1816-1824 (2008) · Zbl 1147.34350 · doi:10.1016/j.na.2007.01.014
[14] Krejn, S. G.: Linear equations in Banach space (Linejnye uravneniya v banakhovom prostranstve), (1971) · Zbl 0233.47001