×

zbMATH — the first resource for mathematics

Metric-based upscaling. (English) Zbl 1190.35070
Summary: We consider divergence form elliptic operators in dimension \(n \geq 2\) with \(L^{\infty}\) coefficients. Although solutions of these operators are only Hölder-continuous, we show that they are differentiable \((C^{1,\alpha})\) with respect to harmonic coordinates. It follows that numerical homogenization can be extended to situations where the medium has no ergodicity at small scales and is characterized by a continuum of scales. This new numerical homogenization method is based on the transfer of a new metric in addition to traditional averaged (homogenized) quantities from subgrid scales into computational scales. Error bounds can be given and this method can also be used as a compression tool for differential operators.

MSC:
35J25 Boundary value problems for second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
74Q05 Homogenization in equilibrium problems of solid mechanics
76M50 Homogenization applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alessandrini, J Anal Math 90 pp 197– (2003)
[2] ; A multiscale finite element method for numerical homogenization. Technical report, Le Centre de Mathématiques Appliquées de l’École Polytechnique, Palaiseau, France, 2004.
[3] Alpert, SIAM J Sci Comput 14 pp 159– (1993)
[4] Ancona, Nagoya Math J 165 pp 123– (2002) · Zbl 1028.31003 · doi:10.1017/S0027763000008187
[5] Armaou, Internat J Robust Nonlinear Control 14 pp 89– (2004)
[6] Astala, Calc Var Partial Differential Equations 18 pp 335– (2003)
[7] ; ; ; Multiscale inversion of elliptic operators. Signal and image representation in combined spaces, 341–359. Wavelet Analysis and Its Applications, 7. Academic Press, San Diego, 1998.
[8] Barlow, Comm Pure Appl Math 58 pp 1642– (2005)
[9] Approximate inverse preconditioning of FE systems for elliptic operators with non-smooth coefficients. Preprint 7/2004, Max-Planck-Institut MiS, Leipzig, 2005.
[10] Bebendorf, Math Comp 74 pp 1179– (2005)
[11] Why approximate LU decompositions of finite element discretizations of elliptic operators can be computed with almost linear complexity. Preprint 8/2005 Max-Planck-Institut MiS, Leipzig, 2005.
[12] ; Efficient solution of nonlinear elliptic problems using hierarchical matrices with broyden updates. Preprint 51/2005, Max-Planck-Institut MiS, Leipzig, 2005.
[13] Bebendorf, Numer Math 95 pp 1– (2003)
[14] Ben Arous, Comm Pure Appl Math 56 pp 80– (2003)
[15] ; ; Asymptotic analysis for periodic structures. Studies in Mathematics and Its Applications, 5. North-Holland, Amsterdam-New York, 1978.
[16] Beylkin, Comm Pure Appl Math 44 pp 141– (1991)
[17] ; ; Fast wavelet transforms and numerical algorithms. I. Wavelets and applications (Marseille, 1989), 368–393. RMA: Research Notes in Applied Mathematics, 20. Masson, Paris, 1992.
[18] Beylkin, Appl Comput Harmon Anal 5 pp 129– (1998)
[19] Brewster, Appl Comput Harmon Anal 2 pp 327– (1995)
[20] ; Subgrid phenomena and numerical schemes. Frontiers in numerical analysis (Durham, 2002), 1–16. Universitext, Springer, Berlin, 2003. · doi:10.1007/978-3-642-55692-0_1
[21] Briane, Arch Ration Mech Anal 173 pp 133– (2004)
[22] Campanato, Ann Scuola Norm Sup Pisa (3) 21 pp 701– (1967)
[23] Chertock, Multiscale Model Simul 3 pp 65– (2004)
[24] Cirak, Internat J Numer Methods Engrg 47 pp 2039– (2000)
[25] Sur les singularités oscillantes et les formalsime multifractal. Doctoral dissertation, University of Paris XII, 2002.
[26] Coifman, J Math Pures Appl (9) 72 pp 247– (1993)
[27] De Giorgi, Mem Accad Sci Torino Cl Sci Fis Mat Nat (3) 3 pp 25– (1957)
[28] ; ; Multiscale mathematics initiative: a roadmap. Report from the 3rd DOE workshop on multiscale mathematics. Technical report, Department of Energy, Washington, D.C., December 2004. Available at: http://www.sc.doe.gov/ascr/mics/amr
[29] Dorobantu, SIAM J Numer Anal 35 pp 540– (1998)
[30] ; ; ; ; The heterogeneous multiscale method: a review. Technical report, preprint, 2005. Available at: http://www.math.princeton.edu/
[31] Efendiev, SIAM J Numer Anal 37 pp 888– (2000)
[32] Entropy, large deviations, and statistical mechanics. Grundlehren der Mathematischen Wissenschaften, 271. Springer, New York, 1985. · doi:10.1007/978-1-4613-8533-2
[33] ; Theory and practice of finite elements. Applied Mathematical Sciences, 159. Springer, New York, 2004. · doi:10.1007/978-1-4757-4355-5
[34] Farhat, Comput Methods Appl Mech Engrg 190 pp 6455– (2001)
[35] Farhat, Comput Methods Appl Mech Engrg 192 pp 3195– (2003)
[36] ; Fmm and -matrices: a short introduction to the basic idea. Technical report. TR-2002-008, Department for Mathematics and Computer Science, University of Mannheim, 2004. Available at: http://bibserv7.bib.uni-mannheim.de/madoc/
[37] Fish, Comput Mech 12 pp 164– (1993)
[38] Fish, Internat J Numer Methods Engrg 62 pp 1341– (2005)
[39] Freiberg, Potential Anal 16 pp 265– (2002)
[40] Freiberg, Math Nachr 260 pp 34– (2003)
[41] ; Fully developed turbulence and intermittency. Proceedings of the International Summer School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, 84–88. North Holland, Amsterdam, 1985.
[42] Gilbert, Appl Comput Harmon Anal 5 pp 1– (1998)
[43] Goubet, C R Acad Sci Paris Sér I Math 315 pp 1315– (1992)
[44] Greengard, J Comput Phys 73 pp 325– (1987)
[45] Hackbusch, Computing 20 pp 291– (1978)
[46] Hackbusch, Math Bohem 127 pp 229– (2002)
[47] Hoang, Multiscale Model Simul 3 pp 168– (2004)
[48] Finite element methods with B-splines. Frontiers in Applied Mathematics, 26. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2003. · Zbl 1020.65085 · doi:10.1137/1.9780898717532
[49] Höllig, SIAM J Numer Anal 39 pp 442– (2001)
[50] Hou, J Comput Phys 134 pp 169– (1997)
[51] Hou, Commun Math Sci 2 pp 185– (2004) · Zbl 1085.65109 · doi:10.4310/CMS.2004.v2.n2.a3
[52] Jaffard, C R Acad Sci Paris Sér I Math 317 pp 745– (1993)
[53] Jenny, J Comput Phys 187 pp 47– (2003)
[54] ; ; Homogenization of differential operators and integral functionals. Springer, Berlin, 1994. · doi:10.1007/978-3-642-84659-5
[55] Kigami, J Funct Anal 128 pp 48– (1995)
[56] Leonardi, Comment Math Univ Carolin 43 pp 43– (2002)
[57] ; ; Elliptic and parabolic equations with discontinuous coefficients. Mathematical Research, 109. Wiley-VCH, Berlin, 2000. · Zbl 0958.35002 · doi:10.1002/3527600868
[58] ; ; ; Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics III, 35–57. Mathematics and Visualization. Springer, Berlin, 2003. · doi:10.1007/978-3-662-05105-4_2
[59] Moser, Comm Pure Appl Math 14 pp 577– (1961)
[60] Murat, Ann Scuola Norm Sup Pisa Cl Sci (4) 5 pp 489– (1978)
[61] ; H-convergence. Topics in the mathematical modelling of composite materials, 21–43. Progress in Nonlinear Differential Equations and Their Applications, 31. Birkhäuser, Boston, 1997. · doi:10.1007/978-1-4612-2032-9_3
[62] ; ; ; Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. arXiv: math.NA/0503445 2005. · Zbl 1103.60069
[63] Nash, Amer J Math 80 pp 931– (1958)
[64] Oberai, Comput Methods Appl Mech Engrg 154 pp 281– (1998)
[65] Owhadi, Ann Probab 31 pp 1935– (2003)
[66] Owhadi, Comm Math Phys 247 pp 553– (2004)
[67] ; Homogenization of parabolic equations with a continuum of space and time scales. Preprint, 2005.
[68] An introduction to multifractals. Technical report, Rice University, 1997. Available at: http://www.stat.rice.edu/riedi/.
[69] Shenoy, J Mech Phys Solids 47 pp 611– (1999)
[70] Simon, Arch Rational Mech Anal 56 pp 253– (1974)
[71] Strichartz, J Funct Anal 198 pp 43– (2003)
[72] Stroock, Ann Inst H Poincarè Probab Statist 33 pp 619– (1997)
[73] Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, 136–212. Research Notes in Mathematics, 39. Pitman, Boston-London, 1979.
[74] Homogénéisation et compacité par compensation. Séminaire Goulaouic-Schwartz (1978/1979), Exp. No. 9, 9 pp. École Polytechnique, Palaiseau, France, 1979.
[75] Wan, SIAM J Sci Comput 21 pp 1632– (1999)
[76] An introduction to multigrid convergence theory. Iterative methods in scientific computing (Hong Kong, 1995), 169–241. Springer, Singapore, 1997.
[77] Xu, SIAM J Sci Comput 15 pp 172– (1994)
[78] Thermodynamic formalism and holomorphic dynamical systems. SMF/AMS Texts and Monographs, 2. American Mathematical Society, Providence, R.I.; Société Mathématique de France, Paris, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.