×

Self-replication of spatial patterns in a ratio-dependent predator-prey model. (English) Zbl 1190.37085

Summary: The results concerning the self-replication pattern formation in the spatio-temporal prey-predator model with ratio-dependent functional response are reported. The Turing instability region is obtained with the help of standard analysis of the linearized model around the coexisting equilibrium point. Numerical simulation reveals the self-replicating pattern for a certain choice of parametric values.

MSC:

37N25 Dynamical systems in biology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predatorprey systems: Spatio-temporal patterns in the neighborhood of TuringHopf bifurcations, J. Theoret. Biol., 245, 220-229 (2007) · Zbl 1451.92248
[2] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-diffusion Equations (2003), Wiley: Wiley England · Zbl 1059.92051
[3] Wang, W.; Liu, Q. X.; Jin, Z., Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys. Rev. E, 75, 051913-051921 (2007)
[4] Gause, G. F., The Strugle for Existence (1935), Williams and Wilkins: Williams and Wilkins Baltimore
[5] MacArthur, R. H.; Wilson, E. O., The Theory of Island Biogeography (1967), Princeton University Press: Princeton University Press Princeton
[6] MacArthur, R. H., Geographical Ecology (1972), Harper and Row: Harper and Row New York
[7] Yodzis, P., Introduction to Theoretical Ecology (1989), Harper and Row: Harper and Row New York · Zbl 0763.92012
[8] Hutchison, G. E., The paradox of the plankton, Amer. Nat., 95, 145-159 (1961)
[9] Tilman, D., Resource Competition and Community Structure (1982), Princeton University Press: Princeton University Press Princeton
[10] Tilman, D., Competition and bioderversity in spatially structured habitats, Ecology, 75, 2-16 (1994)
[11] Okubo, A.; Levin, S., Diffusion and Ecological Problems: Modern Perspectives (2001), Springer: Springer Berlin · Zbl 1027.92022
[12] Turing, A. M., The Chemical Basis of Morphogenesis, Philos. Trans. R. Soc. Lon. B, 237, 37-72 (1952) · Zbl 1403.92034
[13] Meinhardt, H., Models of Biological Pattern Formation (1982), Academic Press: Academic Press London
[14] Murray, J. D., Mathematical Biology II (2002), Springer-Verlag: Springer-Verlag Heidelberg
[15] Segel, L. A.; Jackson, J. L., Dissipative structure: an explanation and an ecological example, J. Theoret. Biol., 37, 545-559 (1972)
[16] Pearson, J. E., Complex patterns in a simple system, Science, 261, 189-192 (1993)
[17] Reynolds, W. N.; Pearson, J. E.; Ponce-Dawson, S., Dynamics of self-replicating patterns in reaction diffusion systems, Phys. Rev. Lett., 72, 2797-2800 (1994)
[18] Lin, K. J.; McCormick, W. D.; Pearson, J. E.; Swinney, H. L., Experimental observation of self-replicating spots in a reaction-diffusion system, Nature, 369, 215-218 (1994)
[19] Lee, K. J.; McCormick, W. D.; Ouyang, Q.; Swinney, H. L., Pattern formation by interacting chemical fronts, Science, 261, 192-194 (1993)
[20] Benson, D. L.; Sherratt, J.; Maini, P. K., Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biol., 55, 365-384 (1993) · Zbl 0758.92003
[21] Benson, D. L.; Maini, P. K.; Sherratt, J., Pattern formation in reaction diffusion models with spatially inhomogencous diffusion coefficients, Math. Comput. Modelling, 17, 29-34 (1993) · Zbl 0784.92004
[22] Garvie, M. R., Finite-Difference schemes for reactiondiffusion equations modeling predatorprey interactions in MATLAB, Bull. Math. Biol., 69, 931-956 (2007) · Zbl 1298.92081
[23] Gurney, W. S.C.; Veith, A. R.; Cruichshank, I.; McGeachin, G., Circle and spiral: Population persistence in a spatially explicit predator-prey model, Ecology, 79, 2516-2530 (1998)
[24] Kozlova, I.; Singh, M.; Easton, A.; Ridland, P., Two-spotted spider mite predator-prey model, Math. Comput. Modelling, 42, 1287-1298 (2005) · Zbl 1080.92062
[25] Maini, P. K.; Benson, D. L.; Sherratt, J. A., Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients, IMA J. Math. Appl. Med. Biol., 9, 197-213 (1992) · Zbl 0767.92004
[26] Sherratt, J. A., Turing bifurcations with a temporally varying diffiusion coefficient, J. Math. Biol., 33, 295-308 (1995) · Zbl 0812.92024
[27] Sherratt, J. A., Diffusion-driven instability in oscillating enviroments, Eur. J. Appl. Math., 6, 355-372 (1995) · Zbl 0847.35066
[28] Bartumeus, F.; Alonsoa, D.; Catalana, J., Self-organized spatial structures in a ratio-dependent predatorprey model, Physica A, 295, 53-57 (2001) · Zbl 0978.35016
[29] Fan, Y. H.; Li, W. T., Global asymptotic stability of a ratio-dependent predatorprey system with diffusion, J. Comput. Appl. Math., 188, 205-227 (2006)
[30] Slobodkin, L. B., The role of minimalism in art and science, Am. Nat., 127, 252-265 (1986)
[31] Beddington, J. R.; Hassell, M. P.; Lawton, J. H., The components of arthropod predation-II, the predator rate of increase, J. Anim. Ecol., 44, 331-340 (1976)
[32] Coe, M. J.; Cumming, D. H.; Phillipson, J., Biomass and production of large African herbivores in relation to rainfall and primary production, Oecologia, 22, 341-354 (1976)
[33] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biol., 139, 311-326 (1989)
[34] Berryman, A. A., The origin and evolution of predator-prey theory, Ecology, 73, 1530-1535 (1992)
[35] Jost, C.; Arino, O.; Arditi, R., About deterministic extinction in ratio-dependent predator-prey model, Bull. Math. Biol., 61, 19-32 (1999) · Zbl 1323.92173
[36] Kuang, Y., Basic properties of mathematical population models, J. Biomath., 17, 129-142 (2002)
[37] Freedman, H. I.; Mathsen, A. M., Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math. Biol., 55, 817-827 (1993) · Zbl 0771.92017
[38] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 389-406 (1998) · Zbl 0895.92032
[39] Xiao, D.; Ruan, S., Global dynamics of a ratio-dependent predator-prey systems, J. Math. Biol., 43, 221-290 (2001) · Zbl 1007.34031
[40] Bandyopadhyay, M.; Chattopadhyay, J., Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18, 913-936 (2005) · Zbl 1078.34035
[41] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Application of Hopf-bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[42] I. Kozlova, A numerical study of modelling in mathematical biology, Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia,2002; I. Kozlova, A numerical study of modelling in mathematical biology, Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia,2002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.