×

Integral formula for a generalized Sato-Levine invariant in magnetic hydrodynamics. (English. Russian original) Zbl 1190.53071

Math. Notes 85, No. 4, 503-514 (2009); translation from Mat. Zametki 85, No. 4, 524-537 (2009).
The authors investigate the problem of finding a higher analog of the helicity integral for divergence-free vector fields. They propose the construction of a new fourth-order integral \(\mathbf{W}\) which is defined for the magnetic field represented by two tubes, and extend a previous integral defined for two tubes with zero linking number [J. Geom. Phys. 15, No. 2, 95–101 (1995; Zbl 0836.57005)].
It is shown that \(\mathbf{W}\) is preserved under the motion of tubes in an ideal medium.
Also, the topological meaning of \(\mathbf{W}\) is discussed and compared with the generalized Sato-Levine invariant.

MSC:

53C65 Integral geometry
76W05 Magnetohydrodynamics and electrohydrodynamics

Citations:

Zbl 0836.57005
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. I. Arnol’d, Arnold’s Problems (Fazis, Moscow, 2000) [in Russian].
[2] P. Akhmetiev and A. Ruzmaikin, ”A fourth-order topological invariant of magnetic or vortex lines,” J. Geom. Phys. 15(2), 95–101 (1995). · Zbl 0836.57005
[3] Ch. Mayer, Topological Link Invariants of Magnetic Fields, Thesis (Bochum, 2003).
[4] M. I. Monastyrsky and V. S. Retakh, ”Topology of linked defects in condensed matter,” Comm. Math. Phys. 103(3), 445–459 (1986). · Zbl 0588.57009
[5] M. V. Monastyrsky and P. V. Sasorov, ”Topological invariants in magnetic hydrodynamics,” Sov. Phys. JETP 93, 1210–1220 (1987).
[6] M. A. Berger, ”Third-order braid invariants,” J. Phys. A 24(17), 4027–4036 (1991). · Zbl 0747.57002
[7] N.W. Evans and M. A. Berger, ”A hierarchy of linking integrals,” in NATO Adv. Sci. Inst. Ser. E Appl. Sci. (Santa Barbara, CA, 1991), Vol. 218: Topological Aspects of Fluids and Plasmas (Kluwer Acad. Publ., Dordrecht, 1992), pp. 237–248. · Zbl 0799.57004
[8] G. Hornig and Ch. Mayer, ”Towards a third-order topological invariant for magnetic fields,” J. Phys. A 35(17), 3945–3959 (2002). · Zbl 1040.76067
[9] H. v. Bodecker and G. Hornig, ”Link-invariants of electromagnetic fields,” Phys. Rev. Lett. 92(3) (2004), Article no. 030406, 4p. · Zbl 1267.78004
[10] P. M. Akhmetiev [Akhmet’ev], ”On a new integral formula for an invariant of 3-component oriented links,” J. Geom. Phys. 53(2), 180–196 (2005). · Zbl 1070.57007
[11] P. M. Akhmetiev [Akhmet’ev], ”On a higher analog of the linking number of two curves,” in Amer. Math. Soc. Transl. Ser. 2, Vol. 185: Topics in Quantum Groups and Finite-Type Invariants (Amer. Math. Soc., Providence, RI, 1998), pp. 113–127. · Zbl 0901.57011
[12] Y. Nakanishi, ”Delta link homotopy for two component links,” Topology Appl. 121(1–2), 169–182 (2002). · Zbl 1001.57013
[13] P. M. Akhmet’ev and D. Repovsh, ”A generalization of the Sato-Levine invariant,” in Trudy Mat. Inst. Steklov, Vol. 221: Local and Global Problems of Theory of Singularities (Nauka, Moscow, 1998), pp. 69–80 [Proc. Steklov Inst. Math. 221, 60–70 (1998)].
[14] P. M. Akhmet’ev, O. V. Kunakovskaya, and V. A. Kutvitskii, ”Remark on dissipation of the magnetic helicity integral,” Teoret. Mat. Fiz. 158(1), 150–160 (2009). · Zbl 1206.76084
[15] P. M. Akhmet’ev, ”A higher-order analog of the linking number for a pair of divergence-free vector fields,” Zap. Nauchn. Semin. POMI 279, 15–23 (2001) [J. Math. Sci., New York 119 (1), 5–9 (2004)].
[16] S. A. Melikhov, Colored Finite Type Invariants and a Multi-Variable Analogue of the Conway Polynomial, arXiv: math. GT/0312007.
[17] P. M. Akhmet’ev, I. Maleshich, and D. Repovsh, ”On Milnor’s invariants of four-component links,” Mat. Zametki 71(4), 496–507 (2002) [Math. Notes 71 (3–4), 455–463 (2002)].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.