Bercu, Bernard; De Saporta, Benoîte; Gégout-Petit, Anne Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. (English) Zbl 1190.60019 Electron. J. Probab. 14, 2492-2526 (2009). Summary: We study the asymptotic behavior of the least squares estimators of the unknown parameters of general \(p\)th-order bifurcating autoregressive processes. Under very weak assumptions on the driven noise of the process, namely conditional pair-wise independence and suitable moment conditions, we establish the almost sure convergence of our estimators together with the quadratic strong law and the central limit theorem. All our analysis relies on non-standard asymptotic results for martingales. Cited in 1 ReviewCited in 21 Documents MSC: 60F15 Strong limit theorems 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 60G42 Martingales with discrete parameter 62F12 Asymptotic properties of parametric estimators Keywords:bifurcating autoregressive process; tree-indexed times series; martingales; least squares estimation; almost sure convergence; quadratic strong law; central limit theorem PDF BibTeX XML Cite \textit{B. Bercu} et al., Electron. J. Probab. 14, 2492--2526 (2009; Zbl 1190.60019) Full Text: DOI arXiv EuDML EMIS OpenURL