Miermont, Grégory; Weill, Mathilde Radius and profile of random planar maps with faces of arbitrary degrees. (English) Zbl 1190.60024 Electron. J. Probab. 13, 79-106 (2008). Summary: We prove some asymptotic results for the radius and the profile of large random planar maps with faces of arbitrary degrees. Using a bijection due to J. Bouttier, P. Di Francesco and E. Guitter [Electron. J. Comb. 11, No. 1, Research paper R69, 27 p., electronic only (2004; Zbl 1060.05045)] between rooted planar maps and certain four-type trees with positive labels, we derive our results from a conditional limit theorem for four-type spatial Galton-Watson trees. Cited in 8 Documents MSC: 60F17 Functional limit theorems; invariance principles 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 05C80 Random graphs (graph-theoretic aspects) 60D05 Geometric probability and stochastic geometry Keywords:random planar map; invariance principle; multitype spatial galton-watson tree; Brownian snake Citations:Zbl 1060.05045 PDF BibTeX XML Cite \textit{G. Miermont} and \textit{M. Weill}, Electron. J. Probab. 13, 79--106 (2008; Zbl 1190.60024) Full Text: DOI arXiv EuDML EMIS OpenURL