Lin, C. Devon; Bingham, Derek; Sitter, Randy R.; Tang, Boxin A new and flexible method for constructing designs for computer experiments. (English) Zbl 1190.62141 Ann. Stat. 38, No. 3, 1460-1477 (2010). Summary: We develop a new method for constructing “good” designs for computer experiments. The method derives its power from its basic structure that builds large designs using small designs. We specialize the method for the construction of orthogonal Latin hypercubes and obtain many results along the way. In terms of run sizes, the existence problem of orthogonal Latin hypercubes is completely solved. We also present an explicit result showing how large orthogonal Latin hypercubes can be constructed using small orthogonal Latin hypercubes. Another appealing feature of our method is that it can easily be adapted to construct other designs; we examine how to make use of the method to construct nearly orthogonal and cascading Latin hypercubes. Cited in 44 Documents MSC: 62K99 Design of statistical experiments 05B15 Orthogonal arrays, Latin squares, Room squares 62P99 Applications of statistics 05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.) Keywords:cascading Latin hypercube; Hadamard matrix; Kronecker product; orthogonal array; orthogonal Latin hypercube; space-filling design Software:EGO × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bingham, D., Sitter, R. R. and Tang, B. (2009). Orthogonal and nearly orthogonal designs for computer experiments. Biometrika 96 51-65. · Zbl 1162.62073 · doi:10.1093/biomet/asn057 [2] Cioppa, T. M. and Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics 49 45-55. · doi:10.1198/004017006000000453 [3] Colbourn, C. J., Kløve, T. and Ling, A. C. H. (2004). Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inform. Theory 50 1289-1291. · Zbl 1296.94011 [4] Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans . Wiley, New York. · Zbl 0930.62081 [5] Geramita, A. V. and Seberry, J. (1979). Orthogonal Designs: Quadratic Forms and Hadamard Matrices . Dekker, New York. · Zbl 0411.05023 [6] Handcock, M. S. (1991). On cascading Latin hypercube designs and additive models for experiments. Comm. Statist. Theory Methods 20 417-439. · doi:10.1080/03610929108830507 [7] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications . Springer, New York. · Zbl 0935.05001 [8] Jones, D. R., Schonlau, M. and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. J. Global Optim. 13 455-492. · Zbl 0917.90270 · doi:10.1023/A:1008306431147 [9] Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs. Statist. Sinica 18 171-186. · Zbl 1137.62050 [10] Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 425-464. JSTOR: · Zbl 1007.62021 · doi:10.1111/1467-9868.00294 [11] Lin, C. D. (2008). New developments in designs for computer experiments and physical experiments. Ph.D. thesis, Simon Fraser Univ. [12] Linkletter, C., Bingham, D., Hengartner, N., Higdon, D. and Ye, K. Q. (2006). Variable selection for Gaussian process models in computer experiments. Technometrics 48 478-490. · doi:10.1198/004017006000000228 [13] McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 239-245. JSTOR: · Zbl 0415.62011 · doi:10.2307/1268522 [14] Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments. J. Statist. Plann. Inference 43 381-402. · Zbl 0813.62065 · doi:10.1016/0378-3758(94)00035-T [15] Mukerjee, R. and Wu, C. F. J. (2006). A Modern Theory of Factorial Designs . Springer, New York. · Zbl 1271.62179 [16] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409-435. · Zbl 0955.62619 · doi:10.1214/ss/1177012413 [17] Shewry, M. C. and Wynn, H. P. (1987). Maximum entropy sampling. J. Appl. Statist. 4 409-435. [18] Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube designs. Biometrika 93 279-288. · Zbl 1153.62349 · doi:10.1093/biomet/93.2.279 [19] Vartak, M. N. (1955). On an application of Kronecker product of matrices to statistical designs. Ann. Math. Statist. 26 420-438. · Zbl 0065.12002 · doi:10.1214/aoms/1177728488 [20] Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris, M. D. (1992). Screening, predicting, and computer experiments. Technometrics 34 15-25. [21] Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs. Technometrics 44 356-368. JSTOR: · doi:10.1198/004017002188618554 [22] Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer experiments. J. Amer. Statist. Assoc. 93 1430-1439. JSTOR: · Zbl 1064.62553 · doi:10.2307/2670057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.