An approximate solution method for boundary layer flow of a power law fluid over a flat plate. (English) Zbl 1190.80024

Summary: The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index \(n=2\). The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case \(n=1\).


80A20 Heat and mass transfer, heat flow (MSC2010)
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76A05 Non-Newtonian fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
80M25 Other numerical methods (thermodynamics) (MSC2010)
Full Text: DOI Link


[1] Acrivos, A.; Shah, M. J.; Petersen, E. E.: Momentum and heat transfer in laminar boundary flow of non-Newtonian fluids past external surfaces, Aiche J. 6, 312-317 (1960)
[2] Andersson, H. I.; Toften, T. H.: Numerical-solution of the laminar boundary-layer equations for power-law fluids, J. non-Newtonian fluid mech. 32, No. 2, 175-195 (1989) · Zbl 0672.76011
[3] Antic, A.; Hill, J. M.: The double-diffusivity heat transfer model for grain stores incorporating microwave heating, Appl. math. Model. 27, 629-647 (2003) · Zbl 1043.80001
[4] Benlahsen, M.; Gueddab, M.; Kersner, R.: The generalized Blasius equation revisited, Math. comp. Model. 47, No. 9 – 10, 1063-1076 (2008) · Zbl 1144.76307
[5] W.F. Braga, M.B.H. Mantelli, J.L.F. Azevedo, Approximate analytical solution for one-dimensional finite ablation problem with constant time heat flux, in: AIAA Thermophys. Conference, 2004.
[6] Cebeci, T.; Bradshaw, P.: Momentum transfer in boundary layers, (1977) · Zbl 0424.76023
[7] Chhabra, R. P.; Richardson, J. F.: Non-Newtonian flow and applied rheology, (2008)
[8] Chhabra, R. P.: Laminar boundary layer heat transfer to power law fluids: an approximate analytical solution, J. chem. Eng. jpn. 32, No. 6, 812-816 (1999)
[9] , Rheology and non-Newtonian flows 7 (1988)
[10] El Defrawi, M.; Finlayson, B. A.: On the use of the integral method for flow of power law fluids, Aiche J. 18, 251-253 (1972)
[11] Denier, J. P.; Dabrowski, P. P.: On the boundary-layer equations for power-law fluids, Proc. R. Soc. lond. 460, 3143-3158 (2004) · Zbl 1074.76002
[12] Hsu, C-C: A simple solution for boundary layer flow of power law fluids past a semi-infinite flat plate, Aiche J. 15, No. 3, 367-370 (1969)
[13] Goodman, T. R.: The heat-balance integral and its application to problems involving a change of phase, Trans. ASME 80, 335-342 (1958)
[14] Huang, M. J.; Chen, C. K.: Numerical-analysis for forced-convection over a flat-plate in power law fluids, Int. commun. Heat mass transfer 11, No. 4, 361-368 (1984)
[15] Langford, D.: The heat balance integral method, Int. J. Heat mass transfer 16, 2424-2428 (1973)
[16] Lemieux, P. F.; Dubey, R. N.; Unny, T. E.: Variational method for a pseudoplastic fluid in a laminar boundary layer over a flat plate, Trans. ASME J. Appl. mech., 345-349 (1971)
[17] Mitchell, S. L.; Myers, T. G.: Heat balance integral method for one-dimensional finite ablation, AIAA J. Thermophys. heat transfer 22, No. 3, 508-514 (2008)
[18] Mitchell, S. L.; Myers, T. G.: The application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM review 52, No. 1, 57-86 (2010) · Zbl 1188.80004
[19] Myers, T. G.: The application of non-Newtonian models to thin film flow, Phys. rev. E 72, 066302-1-066302-11 (2005)
[20] Myers, T. G.; Mitchell, S. L.; Muchatibaya, G.: Unsteady contact melting of a rectangular cross-section phase change material on a flat plate, Phys. fluids 20, 103101 (2008) · Zbl 1182.76548
[21] Myers, T. G.: Optimizing the exponent in the heat balance and refined integral methods, Int. commun. Heat mass transfer 36, No. 2, 143-147 (2009)
[22] Myers, T. G.: Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat mass transfer 53, 1119-1127 (2010) · Zbl 1183.80091
[23] Myers, T. G.; Mitchell, S. L.; Muchatibaya, G.; Myers, M. Y.: A cubic heat balance integral method for one-dimensional melting of a finite thickness layer, Int. J. Heat mass transfer 50, No. 25 – 26, 5305-5317 (2007) · Zbl 1140.80389
[24] Pantokratoras, A.: A common error made in investigation of boundary layer flows, Appl. math. Model. 33, 413422 (2009) · Zbl 1167.76322
[25] Rotem, Z.: A note on boundary layer solutions for pseudoplastic fluids, Chem. eng. Sci. 21, 618-620 (1966)
[26] Schlichting, H.; Gersten, K.: Boundary layer theory, (2000) · Zbl 0940.76003
[27] Schowalter, W. R.: The application of boundary layer theory to power law pseudoplastic fluids: similar solutions, Aiche J. 6, 24-28 (1960)
[28] Wang, T. Y.: Mixed convection from a vertical plate to non-Newtonian fluids with uniform surface heat-flux, Int. commun. Heat mass transfer 22, No. 3, 369-380 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.