Eremenko, Alexandre Densities in Fabry’s theorem. (English) Zbl 1191.30001 Ill. J. Math. 52, No. 4, 1277-1290 (2008). A classical result of A. Pringsheim [Math. Ann. XLIV. 41–56 (1894; JFM 25.0389.01)] states that, for every power series \(\sum^\infty_{m=0} a_mz^m\) with nonnegative coefficients and \[ \limsup_{m\to\infty}|a_m|^{1/m}= 1, \] the point \(1\) is singular. This was generalized by E. Fabry [Acta Math. 22, 65–88 (1898; JFM 29.0209.04)] to guarantee the existence of a singular point on a closed arc of \(\{|z|=1\}\) centred at \(1\), subject to certain conditions on the coefficients including a maximum density condition.Improving a recent improvement by N. U. Arakelyan and V. A. Martirosyan [Izv. Akad. Nauk Arm. SSR, Mat. 22, No. 1, 3–21 (1987; Zbl 0626.30002); Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. 22, No. 1, 1–19 (1987; Zbl 0639.30004)], the author further generalizes Pringsheim’s result replacing maximum density by an interior density of Beurling-Malliavin type. Reviewer: D. A. Brannan (Milton Keynes) Cited in 5 Documents MSC: 30B10 Power series (including lacunary series) in one complex variable 30B40 Analytic continuation of functions of one complex variable Keywords:power series; Fabry’s theorem; Pringsheim’s theorem; Beurling-Malliavin density Citations:Zbl 0626.30002; Zbl 0639.30004; JFM 25.0389.01; JFM 29.0209.04 PDF BibTeX XML Cite \textit{A. Eremenko}, Ill. J. Math. 52, No. 4, 1277--1290 (2008; Zbl 1191.30001) Full Text: arXiv Euclid OpenURL References: [1] N. U. Arakelyan and V. A. Martirosyan, Localization of singularities on the boundary of the circle of convergence , Izvestiya Akademii Nauk Armyanskoi SSR, Mat. 22 (1987), 3–21 (Russian). English translation: J. Contemp. Math. Anal. 22 (1988), 1–19. · Zbl 0639.30004 [2] N. Arakelyan, W. Luh and J. Müller, On the localization of singularities of lacunar power series , Complex Var. Elliptic Eq. 52 (2007), 651–573. · Zbl 1123.30001 [3] V. Bernstein, Lecons sur les progrès récents de la théorie des séries de Dirichlet , Gauthier-Villars, Paris, 1933. · Zbl 0008.11503 [4] A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions , Acta Math. 118 (1967), 79–93. · Zbl 0171.11901 [5] L. Bieberbach, Analytische Fortsetzung , Springer, Berlin, 1955. · Zbl 0064.06902 [6] E. Fabry, Sur les séries de Taylor qui ont une infinité de points singuliers , Acta Math. 22 (1898), 65–87. · JFM 29.0209.04 [7] W. Fuchs, On the growth of functions of mean type , Proc. Edinburgh Math. Soc. 9 (1954), 53–70. · Zbl 0056.29704 [8] L. Hörmander, The analysis of linear partial differential operators , vol. I, Springer, Berlin, 1983. [9] J.-P. Kahane, Travaux de Beurling et Malliavin , Sém. Bourbaki, Soc. Math. France, Paris, 1961/62, pp. 1–13. · Zbl 0156.14702 [10] P. Koosis, The logarithmic integral , vol. II, Cambridge Univ. Press, Cambridge, 1992. · Zbl 0791.30020 [11] B. Ya. Levin, Distribution of zeros of entire functions , Amer. Math. Soc., Providence, RI, 1980. [12] G. Pólya, Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe , Math. Ann. 99 (1928), 687–706. · JFM 54.0340.07 [13] G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreichen , Math. Zeitschrift 29 (1929), 549–640. · JFM 55.0186.02 [14] A. Pringsheim, Kritisch-historische Bemerkungen zur Funktionentheorie , I, II, III, Sitzgsber. bayr. Akad. Wiss., Mat-nat. Abt., 1928, 343–358; 1929, 95–124; 295–306. · JFM 54.0340.04 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.