×

Group classification of the generalized Emden-Fowler-type equation. (English) Zbl 1191.34045

This work is devoted to the [group-theoretical] analysis of the generalized Emden-Fowler equation
\[ xu^{\prime\prime}+nu^{\prime}+x^{\nu}F(u)=0. \]
In dependence of the function \(F(u)\), the point symmetries of the equation are found, which gives eight possible cases. Up to the well known linearizable case, the number of these symmetries does not exceed three. These are then compared with the Noether symmetries in order to obtain first integrals. The symmetries are applied in some cases to reduce the corresponding equation.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34A26 Geometric methods in ordinary differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Thomson, W., (), 266
[2] Emden, R., Gaskugeln, anwendungen der mechanischen warmen-theorie auf kosmologie und meteorologische probleme, (1907), Teubner Leipzig · JFM 38.0952.02
[3] Fowler, R.H., The form near infinity of real, continuous solutions of a certain differential equation of the second order, Q. J. math. (Oxford), 45, 289-350, (1914) · JFM 45.0479.01
[4] Fowler, R.H., Further studies of emden’s and similar differential equations, Q. J. math. (Oxford), 2, 259-288, (1931) · JFM 57.0523.02
[5] Mellin, C.M.; Mahomed, F.M.; Leach, P.G.L., Solution of generalized emden – fowler equations with two symmetries, Int. J. nonlin. mech., 29, 529-538, (1994) · Zbl 0812.34001
[6] Meerson, E.; Megged, E.; Tajima, T., On the quasi-hydrostatic flows of radiatively cooling self-gravitating gas clouds, Astrophys. J., 457, 321, (1996)
[7] Gnutzmann, S.; Ritschel, U., Analytic solution of emden – fowler equation and critical adsorption in spherical geometry, Z. phys. B, 96, 391, (1995)
[8] Bahcall, N.A., The galaxy distribution in the cluster Abell 2199, Astrophys. J., 186, 1179, (1973)
[9] Bahcall, N.A., Core radii and central densities of 15 rich clusters of galaxies, Astrophys. J., 198, 249, (1975)
[10] Horedt, G.P., Seven-digit tables of lane – emden functions, Astronom. astrophys., 126, 357-408, (1986)
[11] Horedt, G.P., Approximate analytical solutions of the lane – emden equation in N-dimensional space, Astronom. astrophys., 172, 359-367, (1987) · Zbl 0609.76082
[12] Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M., A new perturbative approach to nonlinear problems, J. math. phys., 30, 1447-1455, (1989) · Zbl 0684.34008
[13] Lima, P.M., Numerical methods and asymptotic error expansions for the emden – fowler equations, J. comput. appl. math., 70, 245-266, (1996) · Zbl 0854.65067
[14] Lima, P.M., Numerical solution of a singular boundary-value problem in non-Newtonian fluid mechanics, Appl. numer. math., 30, 93-111, (1999)
[15] Roxburgh, I.W.; Stockman, L.M., Power series solutions of the polytrope equations, Mon. not. R. astron. soc., 303, 466-470, (1999)
[16] Adomian, G.; Rach, R.; Shawagfen, N.T., On the analytic solution of the lane – emden equation, Found. phys. lett., 8, 161-181, (1995)
[17] Shawagfeh, N.T., Nonperturbative approximate solution for lane – emden equation, J. math. phys., 34, 4364-4369, (1993) · Zbl 0780.34007
[18] Burt, P.B., Nonperturbative solution of nonlinear field equations, Nuovo cimento, 100B, 43-52, (1987)
[19] Wazwaz, A.M., A new algorithm for solving differential equations of lane – emden type, Appl. math. comput., 118, 287-310, (2001) · Zbl 1023.65067
[20] Liao, S., A new analytic algorithm of lane – emden type equations, Appl. math. comput., 142, 1-16, (2003) · Zbl 1022.65078
[21] Chandrasekhar, S., An introduction to the study of stellar structure, (1957), Dover Publications Inc. New York · Zbl 0079.23901
[22] Davis, H.T., Introduction to nonlinear differential and integral equations, (1962), Dover Publications Inc. New York
[23] Datta, B.K., Analytic solution to the lane – emden equation, Nuovo cimento, 111B, 1385-1388, (1996)
[24] Wrubel, M.H., Stellar interiors, (), 53
[25] Momoniat, E.; Harley, C., Approximate implicit solution of a lane – emden equation, New astron., 11, 520-526, (2006)
[26] Leach, P.G.L., First integrals for the modified Emden equation \(\ddot{q} + \alpha(t) \dot{q} + q^n = 0\), J. math. phys., 26, 2510-2514, (1985) · Zbl 0587.34004
[27] Bozhkov, Y.; Martins, A.C.G., Lie point symmetries of the lane – emden systems, J. math. anal. appl., 294, 334-344, (2004) · Zbl 1052.37059
[28] Bozhkov, Y.; Martins, A.C.G., Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents, Nonlinear anal., 57, 773-793, (2004) · Zbl 1061.34030
[29] Euler, N., Transformation properties of \(\ddot{x} + f_1(t) \dot{x} + f_2(t) + f_3(t) x + f_3(t) x^n = 0\), J. nonlinear. math. phys., 4, 310-337, (1997) · Zbl 0949.34028
[30] Govinder, K.S.; Leach, P.G.L., Integrability analysis of the emden – fowler equation, J. nonlinear. math. phys., 14, 3, 435-453, (2007)
[31] Kara, A.H.; Mahomed, F.M., Equivalent Lagrangians and solutions of some classes of nonlinear equations \(\ddot{q} + p(t) \dot{q} + r(t) q = \mu \dot{q}^2 q^{- 1} + f(t) q^n\), Int. J. nonlinear mech., 27, 919-927, (1992) · Zbl 0760.34011
[32] Kara, A.H.; Mahomed, F.M., A note on the solutions of the emden – fowler equation, Int. J. nonlinear mech., 28, 379-384, (1993) · Zbl 0786.34001
[33] Wong, J.S.W., On the generalized emden – fowler equation, SIAM rev., 17, 339-360, (1975) · Zbl 0295.34026
[34] Goenner, H.; Havas, P., Exact solutions of the generalized lane – emden equation, J. math. phys., 41, 7029-7042, (2000) · Zbl 1009.34002
[35] Goenner, H., Symmetry transformations for the generalized lane – emden equation, Gen. relativity gravitation, 33, 833-841, (2001) · Zbl 0989.83024
[36] Wafo Soh, C.; Mahomed, F.M., Noether symmetries of \(y'' = f(x) y^n\) with applications to non-static spherically symmetric perfect fluid solutions, Classical quantum gravity, 16, 3553-3566, (1999) · Zbl 0945.76101
[37] ()
[38] Lie, S., Differentialgleichungen, (1967), Chelsea New York
[39] Mahomed, F.M.; Kara, A.H.; Leach, P.G.L., Lie and Noether counting theorems for one-dimensional systems, J. math. anal. appl., 178, 116-129, (1993) · Zbl 0783.34002
[40] Khalique, C.M.; Ntsime, P., Exact solutions of the lane – emden-type equation, New astron., 13, 476-480, (2008)
[41] Kara, A.H.; Mahomed, F.M., Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear dynam., 45, 367-383, (2006) · Zbl 1121.70014
[42] Kara, A.H.; Mahomed, F.M.; Naeem, I.; Wafo Soh, C., Partial Noether operators and first integrals via partial Lagrangians, Math. methods appl. sci., 30, 2079-2089, (2007) · Zbl 1130.70012
[43] Olver, P.J., Applications of Lie groups to differential equations, (1993), Springer New York · Zbl 0785.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.