Eltayeb, Hassan; Kılıçman, Adem; Fisher, Brian A new integral transform and associated distributions. (English) Zbl 1191.35017 Integral Transforms Spec. Funct. 21, No. 5-6, 367-379 (2010). Summary: We generalize the concepts of a new integral transform, namely the Sumudu transform, to distributions and study some of their properties. Further, we also apply this transform to solve one-dimensional wave equation having a singularity at the initial conditions. Cited in 21 Documents MSC: 35A22 Transform methods (e.g., integral transforms) applied to PDEs 44A35 Convolution as an integral transform Keywords:one-dimensional wave equation; singularity at the initial conditions; Sumudu transform; PDE(s) with variable coefficients; double convolution; distributions PDF BibTeX XML Cite \textit{H. Eltayeb} et al., Integral Transforms Spec. Funct. 21, No. 5--6, 367--379 (2010; Zbl 1191.35017) Full Text: DOI Link References: [1] DOI: 10.1155/S1024123X03207018 · Zbl 1068.44001 [2] Eltayeb H., Int. J. Math. Anal. 4 pp 123– (2010) [3] DOI: 10.1088/0305-4470/35/13/304 · Zbl 1047.46030 [4] DOI: 10.1080/1065246031000081667 · Zbl 1039.33001 [5] DOI: 10.2528/PIER07050904 [6] Kanwal R. P., Generalized Functions Theory and Applications, Birkhauser (2004) [7] Kılıçman A., J. Math. Sci. Adv. Appl. 1 pp 423– (2008) [8] DOI: 10.1016/j.aml.2007.11.002 · Zbl 1173.35404 [9] DOI: 10.1016/j.mcm.2008.05.048 · Zbl 1165.45307 [10] Kılıçman A., On finite product of convolutions and classifications of hyperbolic and elliptic equations (2009) [11] Kılıçman A., Appl. Math. Sci. 4 pp 109– (2010) [12] DOI: 10.1134/S1995080209030044 · Zbl 1223.44002 [13] Tchuenche J. M., Appl. Math. Sci. 1 pp 31– (2007) [14] Watugala G. K., Math. Eng. Ind. 6 pp 319– (1998) [15] Watugala G. K., Math. Eng. Ind. 8 pp 293– (2002) [16] Zayed A. I., Functions and Generalized Functions Transformations (1996) [17] Zhang J., Comp. Sci. J. Moldova 15 pp 303– (2007) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.