zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractal time series -- A tutorial review. (English) Zbl 1191.37002
Summary: Fractal time series substantially differs from conventional one in its statistic properties. For instance, it may have a heavy-tailed probability distribution function (PDF), a slowly decayed autocorrelation function (ACF), and a power spectrum function (PSD) of $1/f$ type. It may have the statistical dependence, either long-range dependence (LRD) or short-range dependence (SRD), and global or local self-similarity. This article will give a tutorial review about those concepts. Note that a conventional time series can be regarded as the solution to a differential equation of integer order with the excitation of white noise in mathematics. In engineering, such as mechanical engineering or electronics engineering, engineers may usually consider it as the output or response of a differential system or filter of integer order under the excitation of white noise. In this paper, a fractal time series is taken as the solution to a differential equation of fractional order or a response of a fractional system or a fractional filter driven with a white noise in the domain of stochastic processes.

MSC:
37-01Instructional exposition (dynamical systems and ergodic theory)
37M10Time series analysis (dynamical systems)
37JxxFinite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
28AxxClassical measure theory
Software:
longmemo
WorldCat.org
Full Text: DOI EuDML
References:
[1] D. H. Griffel, Applied Functional Analysis, Ellis Horwood Series in Mathematics and Its Applications, John Wiley & Sons, New York, NY, USA, 1981. · Zbl 0461.46001
[2] C. K. Liu, Applied Functional Analysis, Defence Industry Press, Beijing, China, 1986.
[3] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, Calif, USA, 1982. · Zbl 0504.28001
[4] G. Korvin, Fractal Models in the Earth Science, Elsevier, New York, NY, USA, 1992.
[5] E. E. Peters, Fractal Market Analysis-Applying Chaos Theory to Investment and Economics, John Wiley & Sons, New York, NY, USA, 1994.
[6] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal Physiology, Oxford University Press, New York, NY, USA, 1994.
[7] W. A. Fuller, Introduction to Statistical Time Series, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1996.
[8] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, Prentice Hall, Englewood Cliffs, NJ, USA, 3rd edition, 1994. · Zbl 0858.62072
[9] S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0832.94001
[10] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedure, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000. · Zbl 1187.62204
[11] B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Selected Works of Benoit B. Mandelbrot, Springer, New York, NY, USA, 2002. · Zbl 1007.01020
[12] J. Beran, Statistics for Long-Memory Processes, vol. 61 of Monographs on Statistics and Applied Probability, Chapman & Hall, New York, NY, USA, 1994. · Zbl 0869.60045
[13] M. Li and P. Borgnat, “Forward for the special issue on traffic modeling, its computations and applications,” to appear in Telecommunication Systems. · doi:10.1007/s11235-009-9206-5
[14] J. Levy-Vehel, E. Lutton, and C. Tricot, Eds., Fractals in Engineering, Springer, New York, NY, USA, 1997.
[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++. The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 2nd edition, 2002. · Zbl 1078.65500
[16] H. Y.-F. Lam, Analog and Digital Filters: Design and Realization, Prentice Hall, Englewood Cliffs, NJ, USA, 1979.
[17] A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York, NY, USA, 1962. · Zbl 0108.11101
[18] R. O. Harger, An Introduction to Digital Signal Processing with MATHCAD, PWS Publishing, Boston, Mass, USA, 1999.
[19] J. Van de Vegte, Fundamentals of Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ, USA, 2003.
[20] M. Li, “Comparative study of IIR notch filters for suppressing 60-Hz interference in electrocardiogram signals,” International Journal of Electronics and Computers, vol. 1, no. 1, pp. 7-18, 2009.
[21] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[22] M. D. Ortigueira, “Introduction to fractional linear systems-part 1: continuous-time case,” IEE Proceedings: Vision, Image and Signal Processing, vol. 147, no. 1, pp. 62-70, 2000. · doi:10.1049/ip-vis:20000272
[23] M. D. Ortigueira, “Introduction to fractional linear systems-part 2: discrete-time case,” IEE Proceedings: Vision, Image and Signal Processing, vol. 147, no. 1, pp. 71-78, 2000. · doi:10.1049/ip-vis:20000273
[24] M. D. Ortigueira, “An introduction to the fractional continuous-time linear systems: the 21st century systems,” IEEE Circuits and Systems Magazine, vol. 8, no. 3, pp. 19-26, 2008. · doi:10.1109/MCAS.2008.928419
[25] Y. Q. Chen and K. L. Moore, “Discretization schemes for fractional-order differentiators and integrators,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 3, pp. 363-367, 2002. · doi:10.1109/81.989172
[26] B. M. Vinagre, Y. Q. Chen, and I. Petras, “Two direct Tustin discretization methods for fractional-order differentiator/integrator,” Journal of the Franklin Institute, vol. 340, no. 5, pp. 349-362, 2003. · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[27] B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, pp. 422-437, 1968. · Zbl 0179.47801 · doi:10.1137/1010093
[28] T. Hida, Brownian Motion, vol. 11 of Applications of Mathematics, Springer, New York, NY, USA, 1980. · Zbl 0423.60063
[29] I. M. Gelfand and K. Vilenkin, Generalized Functions, vol. 1, Academic Press, New York, NY, USA, 1964.
[30] J. Mikusinski, Operational Calculus, International Series of Monographs on Pure and Applied Mathematics, Vol. 8, Pergamon Press, New York, NY, USA, 1959. · Zbl 0151.18303
[31] M. Li and C.-H. Chi, “A correlation-based computational model for synthesizing long-range dependent data,” Journal of the Franklin Institute, vol. 340, no. 6-7, pp. 503-514, 2003. · Zbl 1051.93095 · doi:10.1016/j.jfranklin.2003.09.002
[32] M. D. Ortigueira, “Comments on “Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions”,” Applied Mathematical Modelling, vol. 33, no. 5, pp. 2534-2537, 2009. · Zbl 1185.60063 · doi:10.1016/j.apm.2008.05.018
[33] M. D. Ortigueira and A. G. Batista, “On the relation between the fractional Brownian motion and the fractional derivatives,” Physics Letters A, vol. 372, no. 7, pp. 958-968, 2008. · Zbl 1217.26016 · doi:10.1016/j.physleta.2007.08.062
[34] M. D. Ortigueira and A. G. Batista, “A fractional linear system view of the fractional brownian motion,” Nonlinear Dynamics, vol. 38, no. 1-4, pp. 295-303, 2004. · Zbl 1115.60044 · doi:10.1007/s11071-004-3762-8
[35] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[36] S. C. Lim, M. Li, and L. P. Teo, “Locally self-similar fractional oscillator processes,” Fluctuation and Noise Letters, vol. 7, no. 2, pp. L169-L179, 2007. · doi:10.1142/S0219477507003817
[37] S. C. Lim, M. Li, and L. P. Teo, “Langevin equation with two fractional orders,” Physics Letters A, vol. 372, no. 42, pp. 6309-6320, 2008. · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[38] M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006. · doi:10.1142/S0219477506003604
[39] M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” to appear in Telecommunication Systems. · doi:10.1007/s11235-009-9209-2
[40] B. B. Mandelbrot, Multifractals and 1/f Noise, Selected Works of B. B. Mandelbrot, Springer, New York, NY, USA, 1999. · Zbl 0956.28005
[41] M. Li, “Fractional Gaussian noise and network traffic modeling,” in Proceedings of the 8th International Conference on Applied Computer and Applied Computational Science (WSEAS ’09), pp. 34-39, Hangzhou, China, May 2009.
[42] M. Li, “Self-similarity and long-range dependence in teletraffic,” in Proceedings of the 9th International Conference on Applied Computer and Applied Computational Science (WSEAS ’09), pp. 19-24, Hangzhou, China, May 2009.
[43] P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, “Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail,” to appear in Telecommunication Systems. · doi:10.1007/s11235-009-9205-6
[44] M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008. · doi:10.1016/j.physa.2008.01.026
[45] J. T. Kent and A. T. Wood, “Estimating the fractal dimension of a locally self-similar Gaussian process by using increments,” Journal of the Royal Statistical Society B, vol. 59, no. 3, pp. 679-699, 1997. · Zbl 0889.62072
[46] P. Hall and R. Roy, “On the relationship between fractal dimension and fractal index for stationary stochastic processes,” The Annals of Applied Probability, vol. 4, no. 1, pp. 241-253, 1994. · Zbl 0798.60035 · doi:10.1214/aoap/1177005210
[47] A. J. Adler, The Geometry of Random Fields, John Wiley & Sons, New York, NY, USA, 1981. · Zbl 0478.60059
[48] T. Gneiting and M. Schlather, “Stochastic models that separate fractal dimension and the Hurst effect,” SIAM Review, vol. 46, no. 2, pp. 269-282, 2004. · Zbl 1062.60053 · doi:10.1137/S0036144501394387
[49] S. C. Lim and M. Li, “A generalized Cauchy process and its application to relaxation phenomena,” Journal of Physics A, vol. 39, no. 12, pp. 2935-2951, 2006. · Zbl 1090.82013 · doi:10.1088/0305-4470/39/12/005
[50] M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for long-range dependence: an empirical study,” Fractals, vol. 3, no. 4, pp. 785-798, 1995. · Zbl 0864.62061 · doi:10.1142/S0218348X95000692
[51] M. Li and W. Zhao, “Detection of variations of local irregularity of traffic under DDOS flood attack,” Mathematical Problems in Engineering, vol. 2008, Article ID 475878, 11 pages, 2008. · Zbl 1189.68114 · doi:10.1155/2008/475878 · eudml:45486
[52] M. Li, “An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition,” Computers & Security, vol. 23, no. 7, pp. 549-558, 2004. · doi:10.1016/j.cose.2004.04.005
[53] G. M. Raymond, D. B. Percival, and J. B. Bassingthwaighte, “The spectra and periodograms of anti-correlated discrete fractional Gaussian noise,” Physica A, vol. 322, no. 1-4, pp. 169-179, 2003. · Zbl 1020.60024 · doi:10.1016/S0378-4371(02)01748-X
[54] J. Beran, “Fitting long-memory models by generalized linear regression,” Biometrika, vol. 80, no. 4, pp. 817-822, 1993. · Zbl 0800.62521 · doi:10.1093/biomet/80.4.817
[55] J. Beran, “On parameter estimation for locally stationary long-memory processes,” Journal of Statistical Planning and Inference, vol. 139, no. 3, pp. 900-915, 2009. · Zbl 1156.62055 · doi:10.1016/j.jspi.2008.05.047
[56] M. J. Cannon, D. B. Percival, D. C. Caccia, G. M. Raymond, and J. B. Bassingthwaighte, “Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series,” Physica A, vol. 241, no. 3-4, pp. 606-626, 1997. · doi:10.1016/S0378-4371(97)00252-5
[57] M. J. Cannon, D. B. Percival, D. C. Caccia, G. M. Raymond, and J. B. Bassingthwaighte, “Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series,” Physica A, vol. 241, no. 3-4, pp. 606-626, 1997. · doi:10.1016/S0378-4371(97)00252-5
[58] J. B. Bassingthwaighte and G. M. Raymond, “Evaluating rescaled range analysis for time series,” Annals of Biomedical Engineering, vol. 22, no. 4, pp. 432-444, 1994. · doi:10.1007/BF02368250
[59] S. E. Schepers, J. H. G. M. van Beek, and J. B. Bassingthwaighte, “Four methods to estimate the fractal dimension from self-affine signals,” IEEE Engineering in Medicine and Biology Magazine, vol. 11, no. 2, pp. 57-64, 1992.
[60] J. Mielniczuk and P. Wojdyłło, “Estimation of Hurst exponent revisited,” Computational Statistics & Data Analysis, vol. 51, no. 9, pp. 4510-4525, 2007. · Zbl 1162.62404 · doi:10.1016/j.csda.2006.07.033
[61] D. O. Cajueiro and B. M. Tabak, “The rescaled variance statistic and the determination of the Hurst exponent,” Mathematics and Computers in Simulation, vol. 70, no. 3, pp. 172-179, 2005. · Zbl 1077.82013 · doi:10.1016/j.matcom.2005.06.005
[62] G. M. Raymond and J. B. Bassingthwaighte, “Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise,” Physica A, vol. 265, no. 1-2, pp. 85-96, 1999. · doi:10.1016/S0378-4371(98)00479-8
[63] J. B. Bassingthwaighte and G. M. Raymond, “Evaluation of the dispersional analysis method for fractal time series,” Annals of Biomedical Engineering, vol. 23, no. 4, pp. 491-505, 1995.
[64] C. M. Kendziorski, J. B. Bassingthwaighte, and P. J. Tonellato, “Evaluating maximum likelihood estimation methods to determine the Hurst coefficient,” Physica A, vol. 273, no. 3-4, pp. 439-451, 1999. · doi:10.1016/S0378-4371(99)00268-X
[65] A. Guerrero and L. A. Smith, “A maximum likelihood estimator for long-range persistence,” Physica A, vol. 355, no. 2-4, pp. 619-632, 2005. · doi:10.1016/j.physa.2005.03.002
[66] D. Veitch and P. Abry, “A wavelet-based joint estimator of the parameters of long-range dependence,” IEEE Transactions on Information Theory, vol. 45, no. 3, pp. 878-897, 1999. · Zbl 0945.94006 · doi:10.1109/18.761330
[67] C. Cattani, “Shannon wavelets theory,” Mathematical Problems in Engineering, vol. 2008, Article ID 164808, 24 pages, 2008. · Zbl 1162.42314 · doi:10.1155/2008/164808 · eudml:55461
[68] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” to appear in Telecommunication Systems.
[69] C. Cattani, “Harmonic wavelet analysis of a localized fractal,” International Journal of Engineering and Interdisciplinary Mathematics, vol. 1, no. 1, pp. 35-44, 2009.
[70] E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. · Zbl 1163.83319 · doi:10.1155/2008/410156 · eudml:55558
[71] G. W. Wornell, “Wavelet-based representations for the 1/f family of fractal processes,” Proceedings of the IEEE, vol. 81, no. 10, pp. 1428-1450, 1993. · doi:10.1109/5.241506
[72] P. Abry, D. Veitch, and P. Flandrin, “Long-range dependence: revisiting aggregation with wavelets,” Journal of Time Series Analysis, vol. 19, no. 3, pp. 253-266, 1998. · Zbl 0910.62080 · doi:10.1111/1467-9892.00090
[73] Y.-Q. Chen, R. Sun, and A. Zhou, “An improved Hurst parameter estimator based on fractional Fourier transform,” to appear in Telecommunication Systems. · doi:10.1007/s11235-009-9207-4
[74] R. B. Govindan, J. D. Wilson, H. Preißl, H. Eswaran, J. Q. Campbell, and C. L. Lowery, “Detrended fluctuation analysis of short datasets: an application to fetal cardiac data,” Physica D, vol. 226, no. 1, pp. 23-31, 2007. · Zbl 1106.62120 · doi:10.1016/j.physd.2006.10.019
[75] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York, NY, USA, 1994. · Zbl 0925.60027
[76] T. G. Sinai, “Distribution of the maximum of fractional Brownian motion,” Russian Mathematical Surveys, vol. 52, no. 2, pp. 119-138, 1997. · Zbl 0927.60054 · doi:10.1070/RM1997v052n02ABEH001781
[77] T. G. Sinai, “Self-similar probability distributions,” Theory of Probability & Its Applications, vol. 21, no. 1, pp. 63-80, 1976. · Zbl 0358.60031 · doi:10.1137/1121005
[78] V. M. Sithi and S. C. Lim, “On the spectra of Riemann-Liouville fractional Brownian motion,” Journal of Physics A, vol. 28, no. 11, pp. 2995-3003, 1995. · Zbl 0828.60099 · doi:10.1088/0305-4470/28/11/005
[79] S. V. Muniandy and S. C. Lim, “Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type,” Physical Review E, vol. 63, no. 4, Article ID 046104, 7 pages, 2001. · Zbl 1029.60026 · doi:10.1103/PhysRevE.63.046104
[80] D. Feyel and A. de La Pradelle, “On fractional Brownian processes,” Potential Analysis, vol. 10, no. 3, pp. 273-288, 1999. · Zbl 0944.60045 · doi:10.1023/A:1008630211913
[81] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, NY, USA, 1961. · Zbl 0121.00103
[82] S. C. Lim and S. V. Muniandy, “On some possible generalizations of fractional Brownian motion,” Physics Letters A, vol. 266, no. 2-3, pp. 140-145, 2000. · Zbl 1068.82518 · doi:10.1016/S0375-9601(00)00034-7
[83] P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 197-199, 1989. · doi:10.1109/18.42195
[84] R. F. Peltier and J. Levy-Vehel, “Multifractional Brownian motion: definition and preliminaries results,” INRIA TR 2645, 1995.
[85] R. F. Peltier and J. Levy-Vehel, “A new method for estimating the parameter of fractional Brownian motion,” INRIA TR 2696, 1994.
[86] M. Li, S. C. Lim, and W. Zhao, “Investigating multi-fractality of network traffic using local Hurst function,” Advanced Studies in Theoretical Physics, vol. 2, no. 10, pp. 479-490, 2008.
[87] S. V. Muniandy, S. C. Lim, and R. Murugan, “Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates,” Physica A, vol. 301, no. 1-4, pp. 407-428, 2001. · Zbl 0986.91042 · doi:10.1016/S0378-4371(01)00387-9
[88] M. Li, “Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-a further study,” Applied Mathematical Modelling, vol. 31, no. 3, pp. 625-631, 2007. · Zbl 1197.94006 · doi:10.1016/j.apm.2005.11.029
[89] J.-P. Chiles and P. Delfiner, Geostatistics, Modeling Spatial Uncertainty, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, New York, NY, USA, 1999. · Zbl 0922.62098
[90] P. Todorovic, An Introduction to Stochastic Processes and Their Applications, Springer Series in Statistics: Probability and Its Applications, Springer, New York, NY, USA, 1992. · Zbl 0759.60033
[91] S. C. Lim and S. V. Muniandy, “Generalized Ornstein-Uhlenbeck processes and associated self-similar processes,” Journal of Physics A, vol. 36, no. 14, pp. 3961-3982, 2003. · Zbl 1083.60029 · doi:10.1088/0305-4470/36/14/303
[92] R. L. Wolpert and M. S. Taqqu, “Fractional Ornstein-Uhlenbeck Lévy processes and the telecom process: upstairs and downstairs,” Signal Processing, vol. 85, no. 8, pp. 1523-1545, 2005. · Zbl 1160.94370 · doi:10.1016/j.sigpro.2004.09.016
[93] M. Li and S. C. Lim, “Modeling network traffic using cauchy correlation model with long-range dependence,” Modern Physics Letters B, vol. 19, no. 17, pp. 829-840, 2005. · Zbl 1076.90010 · doi:10.1142/S0217984905008864
[94] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” to appear in IEEE Transactions on Parallel and Distributed Systems.
[95] S. C. Lim and L. P. Teo, “Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure,” Stochastic Processes and Their Applications, vol. 119, no. 4, pp. 1325-1356, 2009. · Zbl 1161.60314 · doi:10.1016/j.spa.2008.06.011
[96] P. Vengadesh, S. V. Muniandy, and W. H. Abd.Majid, “Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes,” Materials Science and Engineering C, vol. 29, no. 5, pp. 1621-1626, 2009. · doi:10.1016/j.msec.2008.12.027
[97] A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and P. Abry, “Non-Gaussian and long memory statistical characterizations for internet traffic with anomalies,” IEEE Transactions on Dependable and Secure Computing, vol. 4, no. 1, pp. 56-70, 2007. · doi:10.1109/TDSC.2007.12
[98] A. Karasaridis and D. Hatzinakos, “Network heavy traffic modeling using \alpha -stable self-similar processes,” IEEE Transactions on Communications, vol. 49, no. 7, pp. 1203-1214, 2001. · Zbl 1063.68519 · doi:10.1109/26.935161
[99] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Physical Review, vol. 36, no. 5, pp. 823-841, 1930. · Zbl 56.1277.03 · doi:10.1103/PhysRev.36.823
[100] D.-X. Lu, Stochastic Processes and Their Applications, Tsinghua University Press, Beijing, China, 2006.
[101] L. Valdivieso, W. Schoutens, and F. Tuerlinckx, “Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type,” Statistical Inference for Stochastic Processes, vol. 12, no. 1, pp. 1-19, 2009. · Zbl 1205.62124 · doi:10.1007/s11203-008-9021-8
[102] M. Shlesinger, G. M. Zaslavsky, and U. Frisch, Eds., Lévy Flights and Related Topics in Physics, Springer, New York, NY, USA, 1995. · Zbl 0823.00016
[103] R. N. Mantegna and H. E. Stanley, “Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight,” Physical Review Letters, vol. 73, no. 22, pp. 2946-2949, 1994. · Zbl 1020.82610 · doi:10.1103/PhysRevLett.73.2946
[104] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Physics Reports, vol. 195, no. 4-5, pp. 127-293, 1990. · doi:10.1016/0370-1573(90)90099-N
[105] D. Applebaum, “Lévy processes-from probability to finance and quantum groups,” Notices of the American Mathematical Society, vol. 51, no. 11, pp. 1336-1347, 2004. · Zbl 1053.60046 · http://www.ams.org/notices/200411/200411-toc.html
[106] R. J. Martin and A. M. Walker, “A power-law model and other models for long-range dependence,” Journal of Applied Probability, vol. 34, no. 3, pp. 657-670, 1997. · Zbl 0882.62085 · doi:10.2307/3215092
[107] R. J. Martin and J. A. Eccleston, “A new model for slowly-decaying correlations,” Statistics & Probability Letters, vol. 13, no. 2, pp. 139-145, 1992. · Zbl 0752.60031 · doi:10.1016/0167-7152(92)90088-M
[108] M. Li, W. Jia, and W. Zhao, “Correlation form of timestamp increment sequences of self-similar traffic on Ethernet,” Electronics Letters, vol. 36, no. 19, pp. 1668-1669, 2000. · doi:10.1049/el:20001183
[109] F. Chapeau-Blondeau, “(max, +) dynamic systems for modeling traffic with long-range dependence,” Fractals, vol. 6, no. 4, pp. 305-311, 1998. · doi:10.1142/S0218348X98000365
[110] B. Minasny and A. B. McBratney, “The Matérn function as a general model for soil variograms,” Geoderma, vol. 128, no. 3-4, pp. 192-207, 2005.
[111] W. Z. Daoud, J. D. W. Kahl, and J. K. Ghorai, “On the synoptic-scale Lagrangian autocorrelation function,” Journal of Applied Meteorology, vol. 42, no. 2, pp. 318-324, 2003. · doi:10.1175/1520-0450(2003)042<0318:OTSSLA>2.0.CO;2
[112] T. von Karman, “Progress in the statistical theory of turbulence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 34, pp. 530-539, 1948. · Zbl 0032.22601 · doi:10.1073/pnas.34.11.530