zbMATH — the first resource for mathematics

Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. (English) Zbl 1191.49040
Summary: We investigate POD discretizations of abstract linear-quadratic optimal control problems with control constraints. We apply the discrete technique developed by M. Hinze [Comput. Optim. Appl. 30, No. 1, 45–61 (2005; Zbl 1074.65069)] and prove error estimates for the corresponding discrete controls, where we combine error estimates for the state and the adjoint system from K. Kunisch and S. Volkwein [Numer. Math. 90, No. 1, 117–148 (2001; Zbl 1005.65112; SIAM J. Numer. Anal. 40, No. 2, 492–515 (2002; Zbl 1075.65118)]. Finally, we present numerical examples that illustrate the theoretical results.

49N10 Linear-quadratic optimal control problems
49M25 Discrete approximations in optimal control
65K10 Numerical optimization and variational techniques
Full Text: DOI
[1] Afanasiev, K., Hinze, M.: Adaptive control of a wake flow using proper orthogonal decomposition. In: Lecture Notes in Pure and Applied Mathematics, vol. 216. pp. 317–332. Decker, New York (2001) · Zbl 1013.76028
[2] Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical report 2000-25, ICASE (2000)
[3] Atwell, J.A., Borggaard, J.T., King, B.B.: Reduced order controllers for Burgers’ equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci. 11, 1311–1330 (2001) · Zbl 1051.93045
[4] Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988) · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[5] Banks, H.T., Joyner, M.L., Winchesky, B., Winfree, W.P.: Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems 16, 1–17 (2000) · Zbl 0960.35107 · doi:10.1088/0266-5611/16/4/304
[6] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Evolution Problems I. Springer, Berlin (1992) · Zbl 0755.35001
[7] Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. In: International Series of Numerical Mathematics, vol. 143, pp. 87–103. Birkhäuser, Basel (2002) · Zbl 1059.93053
[8] Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations. Numer. Math. 97, 297–320 (2004) · Zbl 1055.76027 · doi:10.1007/s00211-003-0507-4
[9] Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998) · Zbl 0902.35002
[10] Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic, New York (1990) · Zbl 0711.62052
[11] Griesse, R., Volkwein, S.: A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system. SIAM J. Control Optim. 44, 467–494 (2005) · Zbl 1090.49024 · doi:10.1137/S0363012903438696
[12] Henri, T., Yvon, M.: Convergence estimates of POD Galerkin methods for parabolic problems. Technical report No. 02-48, Institute of Mathematical Research of Rennes (2002) · Zbl 1088.65576
[13] Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005) · Zbl 1074.65069 · doi:10.1007/s10589-005-4559-5
[14] Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow Turbul. Combust. 65, 273–298 (2000) · Zbl 0996.76025 · doi:10.1023/A:1011417305739
[15] Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 261–306. Springer, Berlin (2005) · Zbl 1079.65533
[16] Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996) · Zbl 0890.76001
[17] Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980) · Zbl 0435.47001
[18] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[19] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2002) · Zbl 1075.65118 · doi:10.1137/S0036142900382612
[20] Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519–535 (2002) · Zbl 1006.93010 · doi:10.1002/rnc.657
[21] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001
[22] Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223–236 (2001) · Zbl 0966.93018 · doi:10.1016/S0895-7177(00)00240-5
[23] Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid. Mech. 497, 335–363 (2003) · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[24] Rathinam, M., Petzold, L.: Dynamic iteration using reduced order models: a method for simulation of large scale modular systems. SIAM J. Numer. Anal. 40, 1446–1474 (2002) · Zbl 1033.65056 · doi:10.1137/S0036142901390494
[25] Ravindran, S.S.: Adaptive reduced order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 28, 1924–1942 (2002) · Zbl 1026.76015 · doi:10.1137/S1064827500374716
[26] Rempfer, D., Fasel, H.F.: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257–283 (1994) · doi:10.1017/S0022112094002351
[27] Rowley, C.W.: Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15, 997–1013 (2005) · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[28] Shvartsman, S.Y., Kevrikidis, Y.: Nonlinear model reduction for control of distributed parameter systems: a computer-assisted study. AIChE J. 44, 1579–1595 (1998) · doi:10.1002/aic.690440711
[29] Sirovich, L.: Turbulence and the dynamics of coherent structures parts I–III. Q. Appl. Math. XLV, 561–590 (1987) · Zbl 0676.76047
[30] Tang, K.Y., Graham, W.R., Peraire, J.: Optimal control of vortex shedding using low-order models I: open loop model development. II. Model based control. Int. J. Numer. Methods Eng. 44, 945–990 (1999) · Zbl 0955.76026 · doi:10.1002/(SICI)1097-0207(19990310)44:7<945::AID-NME537>3.0.CO;2-F
[31] Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40, 2323–2330 (2002) · doi:10.2514/2.1570
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.