Hass, Joel; Nowik, Tahl Unknot diagrams requiring a quadratic number of Reidemeister moves to untangle. (English) Zbl 1191.57006 Discrete Comput. Geom. 44, No. 1, 91-95 (2010). Summary: Given any knot diagram \(E\), we present a sequence of knot diagrams of the same knot type for which the minimum number of Reidemeister moves required to pass to \(E\) is quadratic with respect to the number of crossings. These bounds apply both in \(S ^{2}\) and in \(\mathbb R^{2}\). Cited in 1 ReviewCited in 12 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) Keywords:Reidemister moves; unknot × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28, 562–586 (1926/1927) · JFM 53.0549.02 · doi:10.2307/1968399 [2] Carter, J.S., Elhamdadi, M., Saito, M., Satoh, S.: A lower bound for the number of Reidemeister moves of type III. Topol. Its Appl. 153, 2788–2794 (2006) · Zbl 1106.57003 · doi:10.1016/j.topol.2005.11.011 [3] Hagge, T.J.: Every Reidemeister move is needed for each knot type. Proc. Am. Math. Soc. 134(1), 295–301 (2006) · Zbl 1078.57007 · doi:10.1090/S0002-9939-05-07935-9 [4] Hass, J., Lagarias, J.C.: The number of Reidemeister moves needed for unknotting. J. Am. Math. Soc. 14(2), 399–428 (2001) · Zbl 0964.57005 · doi:10.1090/S0894-0347-01-00358-7 [5] Hass, J., Nowik, T.: Invariants of knot diagrams. Math. Ann. 342, 125–137 (2008) · Zbl 1161.57002 · doi:10.1007/s00208-008-0224-5 [6] Hass, J., Snoeyink, J., Thurston, W.P.: The size of spanning disks for polygonal curves. Discrete Comput. Geom. 29(1), 1–17 (2003) · Zbl 1015.57008 [7] Hayashi, C.: A lower bound for the number of Reidemeister moves for unknotting. J. Knot Theory Ramif. 15(3), 313–325 (2006) · Zbl 1094.57007 · doi:10.1142/S0218216506004488 [8] Östlund, O.: Invariants of knot diagrams and relations among Reidemeister moves. J. Knot Theory Ramif. 10(8), 1215–1227 (2001) · Zbl 0998.57021 · doi:10.1142/S0218216501001402 [9] Reidemeister, H.: Knoten und Gruppen. Abh. Math. Semin. Univ. Hamb. 5, 7–23 (1926) · JFM 52.0578.04 · doi:10.1007/BF02952506 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.