Garet, Olivier; Marchand, Régine First-passage competition with different speeds: positive density for both species is impossible. (English) Zbl 1191.60111 Electron. J. Probab. 13, 2118-2159 (2008). Summary: Consider two epidemics whose expansions on \(\mathbb Z^d\) are governed by two families of passage times that are distinct and stochastically comparable. We prove that when the weak infection survives, the space occupied by the strong one is almost impossible to detect. Particularly, in dimension two, we prove that one species finally occupies a set with full density, while the other one only occupies a set of null density. Furthermore, we observe the same fluctuations with respect to the asymptotic shape as for the weak infection evolving alone. By the way, we extend the Häggström-Pemantle [O. Häggström and R. Pemantle, Stochastic Processes Appl. 90, No. 2, 207–222 (2000; Zbl 1047.60099)] non-coexistence result “except perhaps for a denumerable set” to families of stochastically comparable passage times indexed by a continuous parameter. Cited in 3 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 92D30 Epidemiology Keywords:first-passage percolation; competition; coexistence; random growth; moderate deviations Citations:Zbl 1047.60099 PDF BibTeX XML Cite \textit{O. Garet} and \textit{R. Marchand}, Electron. J. Probab. 13, 2118--2159 (2008; Zbl 1191.60111) Full Text: DOI arXiv EuDML EMIS OpenURL