zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sparsistency and rates of convergence in large covariance matrix estimation. (English) Zbl 1191.62101
Summary: This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order $(s_n \log p_n/n)^{1/2}$, where $s_n$ is the number of nonzero elements, $p_n$ is the size of the covariance matrix and $n$ is the sample size. This explicitly spells out the contribution of high-dimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter $\lambda _n$ goes to 0 have been made explicit and compared under different penalties. As a result, for the $L_1$-penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: $s_n'=O(p_n)$ at most, among $O(p_n^2)$ parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where $s_n'$ is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the SCAD or hard-thresholding penalty functions, there is no such a restriction.

62H12Multivariate estimation
62F12Asymptotic properties of parametric estimators
65C60Computational problems in statistics
Full Text: DOI arXiv
[1] Bai, Z. and Silverstein, J. W. (2006). Spectral Analysis of Large Dimensional Random Matrices . Science Press, Beijing. · Zbl 1196.60002
[2] Bickel, P. J. and Levina, E. (2008a). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. · Zbl 1196.62062 · doi:10.1214/08-AOS600
[3] Bickel, P. J. and Levina, E. (2008b). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. · Zbl 1132.62040 · doi:10.1214/009053607000000758 · euclid:aos/1201877299
[4] Cai, T., Zhang, C.-H. and Zhou, H. (2008). Optimal rates of convergence for covariance matrix estimation. Technical report, The Wharton School, Univ. Pennsylvania.
[5] d’Aspremont, A., Banerjee, O. and El Ghaoui, L. (2008). First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30 56-66. · Zbl 1156.90423 · doi:10.1137/060670985
[6] Dempster, A. P. (1972). Covariance selection. Biometrics 28 157-175.
[7] Diggle, P. and Verbyla, A. (1998). Nonparametric estimation of covariance structure in longitudinal data. Biometrics 54 401-415. · Zbl 1058.62600 · doi:10.2307/3109751
[8] El Karoui, N. (2008). Operator norm consistent estimation of a large dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756. · Zbl 1196.62064 · doi:10.1214/07-AOS559
[9] Fan, J., Feng, Y. and Wu, Y. (2009). Network exploration via the adaptive LASSO and SCAD penalties. Ann. Appl. Stat. 3 521-541. · Zbl 1166.62040 · doi:10.1214/08-AOAS215
[10] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. JSTOR: · Zbl 1073.62547 · doi:10.1198/016214501753382273 · http://links.jstor.org/sici?sici=0162-1459%28200112%2996%3A456%3C1348%3AVSVNPL%3E2.0.CO%3B2-2&origin=euclid
[11] Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. · Zbl 1092.62031 · doi:10.1214/009053604000000256
[12] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical LASSO. Biostatistics 9 432-441. · Zbl 1143.62076 · doi:10.1093/biostatistics/kxm045
[13] Huang, J., Horowitz, J. and Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36 587-613. · Zbl 1133.62048 · doi:10.1214/009053607000000875
[14] Huang, J., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 85-98. · Zbl 1152.62346 · doi:10.1093/biomet/93.1.85
[15] Levina, E., Rothman, A. J. and Zhu, J. (2008). Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Stat. 2 245-263. · Zbl 1137.62338 · doi:10.1214/07-AOAS139
[16] Meier, L., van de Geer, S. and Bühlmann, P. (2008). The group Lasso for logistic regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 53-71. · Zbl 05563343
[17] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. · Zbl 1113.62082 · doi:10.1214/009053606000000281
[18] Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86 677-690. JSTOR: · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677 · http://links.jstor.org/sici?sici=0006-3444%28199909%2986%3A3%3C677%3AJMMWAT%3E2.0.CO%3B2-5&origin=euclid
[19] Ravikumar, P., Lafferty, J., Liu, H. and Wasserman, L. (2007). Sparse additive models. In Advances in Neural Information Processing Systems 20 . MIT Press, Cambridge, MA.
[20] Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494-515. · Zbl 1320.62135 · doi:10.1214/08-EJS176
[21] Smith, M. and Kohn, R. (2002). Parsimonious covariance matrix estimation for longitudinal data. J. Amer. Statist. Assoc. 97 1141-1153. JSTOR: · Zbl 1041.62044 · doi:10.1198/016214502388618942 · http://links.jstor.org/sici?sici=0162-1459%28200212%2997%3A460%3C1141%3APCMEFL%3E2.0.CO%3B2-D&origin=euclid
[22] Wagaman, A. S. and Levina, E. (2008). Discovering sparse covariance structures with the Isomap. J. Comput. Graph. Statist. 18 .
[23] Wong, F., Carter, C. and Kohn, R. (2003). Efficient estimation of covariance selection models. Biometrika 90 809-830. · doi:10.1093/biomet/90.4.809
[24] Wu, W. B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 94 1-17. · doi:10.1093/biomet/90.4.831
[25] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 90 831-844. · Zbl 1142.62408 · doi:10.1093/biomet/asm018
[26] Zhang, C. H. (2007). Penalized linear unbiased selection. Technical report 2007-003, The Statistics Dept., Rutgers Univ.
[27] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. · Zbl 1222.62008 · http://www.jmlr.org/papers/v7/zhao06a.html
[28] Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. · Zbl 1171.62326 · doi:10.1198/016214506000000735
[29] Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Ann. Statist. 36 1509-1533. · Zbl 1142.62027 · doi:10.1214/009053607000000802