zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New modifications of Potra-Pták’s method with optimal fourth and eighth orders of convergence. (English) Zbl 1191.65048
Summary: We present two new iterative methods for solving nonlinear equations by using suitable Taylor and divided difference approximations. Both methods are obtained by modifying Potra-Pták’s method trying to get optimal order. We prove that the new methods reach orders of convergence four and eight with three and four functional evaluations, respectively. So, Kung and Traub’s conjecture [{\it H. T. Kung} and {\it J. F. Traub}, J. Assoc. Comput. Mach. 21, 643--651 (1974; Zbl 0289.65023)], that establishes for an iterative method based on $n$ evaluations an optimal order $p=2^{n - 1}$ is fulfilled, getting the highest efficiency indices for orders $p=4$ and $p=8$, which are 1.587 and 1.682. We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with Potra-Pták’s method from which they have been derived, and with other recently published eighth-order methods.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ostrowski, A. M.: Solutions of equations and systems of equations, (1966) · Zbl 0222.65070
[2] Kung, H. T.; Traub, J. F.: Optimal order of one-point and multi-point iteration, Applied mathematics and computation 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[3] Jarrat, P.: Some fourth order multipoint iterative methods for solving equations, Mathematical computation 20, 434-437 (1966) · Zbl 0229.65049 · doi:10.2307/2003602
[4] King, R.: A family of fourth order methods for nonlinear equations, SIAM journal on numerical analysis 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[5] Basu, D.: From third to fourth order variant of Newton’s method for simple roots, Applied mathematics and computation 202, No. 2, 886-892 (2008) · Zbl 1147.65037 · doi:10.1016/j.amc.2008.02.021
[6] Maheshwari, A. K.: A fourth order iterative method for solving nonlinear equations, Applied mathematics and computation 211, No. 2, 383-391 (2009) · Zbl 1162.65346 · doi:10.1016/j.amc.2009.01.047
[7] Li, X.; Mu, C.; Ma, J.; Wang, C.: Sixteenth-order method for nonlinear equations, Journal of computational and applied mathematics 215, No. 10, 3754-3758 (2010) · Zbl 1205.65171 · doi:10.1016/j.amc.2009.11.016
[8] Bi, W.; Ren, H.; Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations, Journal of computational and applied mathematics 255, 105-112 (2009) · Zbl 1161.65039 · doi:10.1016/j.cam.2008.07.004
[9] J.R. Sharma, R. Sharma, A new family of modified Ostrowski’s methods with accelerated eighth order convergence, Numerical Algoritms, in press (doi:10.1007/s11075-009.9345-5). · Zbl 1195.65067
[10] Bi, W.; Wu, Q.; Ren, H.: A new family of eighth-order iterative methods for solving nonlinear equations, Applied mathematics and computation 214, No. 1, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[11] Thukral, R.; Petkovic, M. S.: A family of three-point methods of optimal order for solving nonlinear equations, Journal of computational and applied mathematics 233, No. 9, 2278-2284 (2010) · Zbl 1180.65058 · doi:10.1016/j.cam.2009.10.012
[12] Liu, L.; Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations, Applied mathematics and computation 215, 3449-3454 (2010) · Zbl 1183.65051 · doi:10.1016/j.amc.2009.10.040
[13] Potra, F. A.; Pták, V.: Nondiscrete introduction and iterative processes, (1984) · Zbl 0549.41001
[14] Traub, J. F.: Iterative methods for the solution of equations, (1982) · Zbl 0472.65040
[15] Danby, J. M. A.; Burkardt, T. M.: The solution of Kepler’s equation, I, Celestial mechanics 31, 95-107 (1983) · Zbl 0572.70014 · doi:10.1007/BF01686811
[16] Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Applied mathematics letters 13, No. 8, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2