zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient computational method for linear fifth-order two-point boundary value problems. (English) Zbl 1191.65103
This paper deals with an algorithm to solve general fifth-order two point BVPs in the reproducing kernel space. The authors give the exact solution denoted by series of the linear fifth-order BVPs, truncating the series, the approximate solution is obtained. Two examples are presented to demonstrate the computational efficiency of the method.

MSC:
65L10Boundary value problems for ODE (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Davies, A. R.; Karageoghis, A.; Phillips, T. N.: Spectral glarkien methods for the primary two-point boundary-value problems in modeling viscelastic flows, Internat. J. Numer. methods engrg. 26, 647-662 (1988) · Zbl 0635.73091 · doi:10.1002/nme.1620260309
[2] Fyfe, D. J.: Linear dependence relations connecting equal interval nth degree splines and their derivatives, J. inst. Math. appl. 7, 398-406 (1971) · Zbl 0219.65010 · doi:10.1093/imamat/7.3.398
[3] Karageoghis, A.; Phillips, T. N.; Davies, A. R.: Spectral collocation methods for the primary two-point boundary-value problems in modeling viscelastic flows, Internat. J. Numer. methods engrg. 26, 805-813 (1998) · Zbl 0637.76008 · doi:10.1002/nme.1620260404
[4] G.L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in: Proceeding of the Conference of the 7th Modern Mathematics and Mechanics, Shanghai, 1997.
[5] Agarwal, R. P.: Boundary value problems for high order differential equations, (1986) · Zbl 0619.34019
[6] Caglar, H. N.; Caglar, S. H.; Twizell, E. H.: The numerical solution of fifth-order boundary-value problems with sixth-degree B-spline functions, Appl. math. Lett. 12, 25-30 (1999) · Zbl 0941.65073 · doi:10.1016/S0893-9659(99)00052-X
[7] Wazwaz, A. M.: The numerical solution of fifth-order boundary-value problems by Adomian decomposition, J. comput. Appl. math. 136, 259-270 (2001) · Zbl 0986.65072 · doi:10.1016/S0377-0427(00)00618-X
[8] Siraj-Ul-Islam; Khan, M. A.: A numerical method based on nonpolynomial sextic spline functions for the solution of special fifth-order boundary value problems, Appl. math. Comput. 181, 356-361 (2006) · Zbl 1148.65312 · doi:10.1016/j.amc.2006.01.042
[9] Siddiqi, Shahid S.; Akram, Ghazala: Sextic spline solutions of fifth order boundary value problems, Appl. math. Lett. 20, 591-597 (2007) · Zbl 1125.65071 · doi:10.1016/j.aml.2006.06.012
[10] Siddiqi, Shahid S.; Akram, Ghazala; Malik, Salman A.: Nonpolynomial sextic spline method for the solution along with convergence of linear special case fifth-order two-point boundary value problems, Appl. math. Comput. 190, 532-541 (2007) · Zbl 1125.65072 · doi:10.1016/j.amc.2007.01.071
[11] Siddiqi, Shahid S.; Akram, Ghazala: Solution of fifth order boundary value problems using nonpolynomial spline technique, Appl. math. Comput. 175, 1574-1581 (2006) · Zbl 1094.65072 · doi:10.1016/j.amc.2005.09.004
[12] Khan, Muhammad Azam; Siraj-Ul-Islam; Tirmizi, Ikram A.; Twizell, E. H.; Ashraf, Saadat: A class of methods based on non-polynomial sextic spline functions for the solution of a special fifth-order boundary-value problems, J. math. Anal. appl. 321, 651-660 (2006) · Zbl 1096.65070 · doi:10.1016/j.jmaa.2005.08.023
[13] Caglar, Hikmet; Caglar, Nazam: Solution of fifth order boundary value problems by using local polynomial regression, Appl. math. Comput. 186, 952-956 (2007) · Zbl 1118.65347 · doi:10.1016/j.amc.2006.08.046
[14] Rashidinia, J.; Jalilian, R.; Farajeyan, K.: Spline approximate solution of fifth-order boundary-value problem, solution of fifth order boundary value problems by using local polynomial regression, Appl. math. Comput. 192, 107-112 (2007) · Zbl 1193.65132 · doi:10.1016/j.amc.2007.02.124
[15] El-Gamel, Mohamed: Sinc and the numerical solution of fifth-order boundary value problems, Appl. math. Comput. 187, No. 22, 1417-1433 (2006) · Zbl 1121.65087 · doi:10.1016/j.amc.2006.09.049
[16] Li, Chunli; Cui, Minggen: The exact solution for solving a class of nonlinear operator equation in the reproducing kernel space, Appl. math. Comput. 143, No. 2--3, 393-399 (2003) · Zbl 1034.47030 · doi:10.1016/S0096-3003(02)00370-3