×

Accurate solutions of fourth order Sturm-Liouville problems. (English) Zbl 1191.65106

Summary: Recently [J. Comput. Appl. Math. 212, No. 2, 282–290 (2008; Zbl 1147.34021)], we introduced a new method which we call the Extended Sampling Method to compute the eigenvalues of second order Sturm-Liouville problems with eigenvalue dependent potential. We shall see in this paper how we use this method to compute the eigenvalues of fourth order Sturm-Liouville problems and present its practical use on a few examples.

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators

Citations:

Zbl 1147.34021

Software:

SLEUTH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Greenberg, L.; Marletta, M., The Code SLEUTH for Solving Fourth Order Sturm-Liouville Problems (1997) · Zbl 0912.65073
[2] Greenberg, L.; Marletta, M., Oscillation theory and numerical solution of fourth order Sturm-Liouville problems, I.M.A. J. Numer. Anal., 319-356 (1995) · Zbl 0832.65087
[3] Chanane, B., Eigenvalues of fourth order Sturm-Liouville problems using fliess series, J. Comput. Appl. Math., 96, 91-97 (1998) · Zbl 0934.65083
[4] Chanane, B., Eigenvalues of Sturm-Liouville problems using Fliess series, Appl. Anal., 69, 3-4, 233-238 (1998) · Zbl 0899.34049
[5] Chanane, B., Fliess series approach to the computation of the eigenvalues of fourth order Sturm-Liouville problems, Appl. Math. Lett., 15, 4, 459-463 (2002) · Zbl 1023.34022
[6] Chanane, B., Approximation of the eigenvalues of regular fourth order Sturm-Liouville problems using interpolation theory, (Chui, Charles K.; Schumaker, Larry L.; Stockler, Joachim, Approximation Theory X: Wavelets, Splines and Applications (2002), Vanderbilt Univ. Press), 155-166 · Zbl 1054.34134
[7] Chanane, B., Sturm-Liouville problems with parameter dependent potential and boundary conditions, J. Comput. Appl. Math., 212, 2, 282-290 (2008) · Zbl 1147.34021
[8] Chanane, B., Computation of the eigenvalues of Sturm-Liouville Problems with parameter dependent boundary conditions using the regularized sampling method, Math. Comput., 74, 252, 1793-1801 (2005) · Zbl 1080.34010
[9] Chanane, B., Computing the spectrum of non self-adjoint Sturm-Liouville problems with parameter dependent boundary conditions, J. Comput. Appl. Math., 206, 1, 229-237 (2007) · Zbl 1117.65117
[10] Chanane, B., Computing the eigenvalues of singular Sturm-Liouville problems using the regularized sampling method, Appl. Math. Comput., 184, 2, 972-978 (2007) · Zbl 1114.65095
[11] Chanane, B., Eigenvalues of Sturm-Liouville problems with discontinuity conditions inside a finite interval, Appl. Math. Comput., 188, 2, 1725-1732 (2007) · Zbl 1124.65066
[12] Chanane, B., Sturm-Liouville problems with impulse effects, Appl. Math. Comput., 190, 1, 610-626 (2007) · Zbl 1122.65378
[13] Chanane, B., Computing the eigenvalues of a class of nonlocal Sturm-Liouville problems, Math. Comput. Modelling, 50, 1-2, 225-232 (2009) · Zbl 1196.65130
[14] Hald, O. H.; McLaughlin, J. R., Inverse nodal problems: Finding the potential from nodal lines, Mem. Amer. Math. Soc., 572, 1-107 (1996) · Zbl 0859.35136
[15] Hald, O. H.; McLaughlin, J. R., Inverse problems: Recovery of BV coefficients from nodes, Inverse Problems, 14, 2, 245-273 (1998) · Zbl 0898.34012
[16] Naimark, M. A., Linear Differential Operators II (1968), G.G. Harrap & Co. Ltd · Zbl 0227.34020
[17] Shin, Chang Eon; Chung, Soon-Yeong; Kim, Dohan, General sampling theorem using contour integral, J. Math. Anal. Appl., 291, 50-65 (2004) · Zbl 1044.94518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.