Jérôme; Droniou; Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. (English) Zbl 1191.65142 Math. Models Methods Appl. Sci. 20, No. 2, 265-295 (2010). Problems with anisotropic heterogeneous diffusion operators are investigated from a numerical point of view. There exist several numerical methods for solving these problems. The authors present the connection between the probably most important of them. The main result of this paper proves that the mimetic finite difference scheme, the hybrid finite volume scheme and the mixed finite volume scheme are identical up to some slight generalization even on general grids and they can be unified in a family of schemes – HMM (hybrid mimetic mixed). First, each proposed method is briefly described and then the generalized definition of the scheme is presented. The equivalence for these generalized methods is proved. The straightforward consequence of this result contains in an extension of some mathematical results (convergence, error estimates) to each of the presented methods. Finally, the relationship between this HMM family of schemes and nonconforming finite element schemes or mixed finite element schemes is investigated. Moreover for isotropic operators with so called “super-admissible discretizations” the HMM method boils down to the well-known efficient flux finite volume scheme.Although the study is performed for the linear equation, this framework can be used for more complex situations as well. Reviewer: Angela Handlovičová (Bratislava) Cited in 91 Documents MSC: 65N08 Finite volume methods for boundary value problems involving PDEs 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs 65N06 Finite difference methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations 65N15 Error bounds for boundary value problems involving PDEs Keywords:elliptic equation; hybrid finite volume scheme; mixed finite volume scheme; mimetic method; diffusion operators; mimetic finite difference scheme; convergence; error estimates; nonconforming finite element schemes; mixed finite element schemes PDF BibTeX XML Cite \textit{Jérôme} et al., Math. Models Methods Appl. Sci. 20, No. 2, 265--295 (2010; Zbl 1191.65142) Full Text: DOI arXiv References: [1] DOI: 10.1007/s00211-007-0126-6 · Zbl 1144.65067 · doi:10.1007/s00211-007-0126-6 [2] DOI: 10.1002/nme.2377 · Zbl 1195.65146 · doi:10.1002/nme.2377 [3] DOI: 10.1137/080717894 · Zbl 1185.65201 · doi:10.1137/080717894 [4] DOI: 10.1137/040613950 · Zbl 1108.65102 · doi:10.1137/040613950 [5] DOI: 10.1142/S0218202506001157 · Zbl 1094.65111 · doi:10.1142/S0218202506001157 [6] DOI: 10.1016/j.cma.2006.10.028 · Zbl 1173.76370 · doi:10.1016/j.cma.2006.10.028 [7] DOI: 10.1142/S0218202505000832 · Zbl 1083.65099 · doi:10.1142/S0218202505000832 [8] DOI: 10.1016/j.cma.2007.09.019 · Zbl 1169.76404 · doi:10.1016/j.cma.2007.09.019 [9] C. Chainais, J. Droniou and R. Eymard, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 751–760. · Zbl 1374.76123 [10] DOI: 10.1137/060657236 · doi:10.1137/060657236 [11] DOI: 10.1051/m2an:2007001 · Zbl 1117.65154 · doi:10.1051/m2an:2007001 [12] DOI: 10.1007/s00211-006-0034-1 · Zbl 1109.65099 · doi:10.1007/s00211-006-0034-1 [13] DOI: 10.1002/num.20333 · Zbl 1153.76044 · doi:10.1002/num.20333 [14] Eymard R., J. Numer. Math. 17 pp 173– [15] DOI: 10.1016/S1570-8659(00)07005-8 · doi:10.1016/S1570-8659(00)07005-8 [16] DOI: 10.1016/j.crma.2007.01.024 · Zbl 1112.65120 · doi:10.1016/j.crma.2007.01.024 [17] R. Eymard, T. Gallouët and R. Herbin, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 801–814. · Zbl 1422.65310 [18] R. Eymard, T. Gallouët and R. Herbin, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 375–382. · Zbl 1422.65309 [19] DOI: 10.1016/j.jcp.2008.06.028 · Zbl 1152.65101 · doi:10.1016/j.jcp.2008.06.028 [20] DOI: 10.1002/num.1690110205 · Zbl 0822.65085 · doi:10.1002/num.1690110205 [21] R. Herbin and F. Hubert, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 659–692, http://www.hal.arhives-ouvertes.fr. · Zbl 1422.65314 [22] DOI: 10.1016/S0045-7825(97)00010-8 · Zbl 0897.76072 · doi:10.1016/S0045-7825(97)00010-8 [23] DOI: 10.1007/s10596-004-3771-1 · Zbl 1088.76046 · doi:10.1007/s10596-004-3771-1 [24] K. Lipnikov, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 843–850. · Zbl 1422.65318 [25] G. Manzini, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 865–878. · Zbl 1422.65320 [26] G. Manzini, Finite Volumes for Complex Applications V, eds. R. Eymard and J.M. Hérard (Wiley, 2008) pp. 119–134. · Zbl 1422.65319 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.