zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An improved ARED algorithm for congestion control of network transmission. (English) Zbl 1191.68096
Summary: In order to achieve high throughput and low average delay in computer network, it is necessary to stabilize the queue length and avoid oscillation or chaos phenomenon. In this paper, based on Adaptive Random Early Detection (ARED), an improved algorithm is proposed, which dynamically changes the range of maximum drop probability $p_{\max}$ according to different network scenarios and adjusts $p_{\max}$ to limit average queue size $q_{\text{ave}}$ in a steady range. Moreover, exponential averaging weight $w$ is adjusted based on linear stability condition to stabilize $q_{\text{ave}}$. A number of simulations show that the improved ARED algorithm can effectively stabilize the queue length and perform better than other algorithms in terms of stability and chaos control.

68M20Performance evaluation of computer systems; queueing; scheduling
90B18Communication networks (optimization)
Full Text: DOI EuDML
[1] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance on a global internet,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465-1480, 1995. · doi:10.1109/49.464716
[2] R. J. La and V. Anantharam, “Utility-based rate control in the Internet for elastic traffic,” IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 272-286, 2002. · doi:10.1109/90.993307
[3] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, 1993. · doi:10.1109/90.251892
[4] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue management,” IEEE Network, vol. 15, no. 3, pp. 48-53, 2001. · doi:10.1109/65.923940
[5] R. J. Gibbens and F. Kelly, “Resource Pricing and the Evolution of Congestion Control,” http://www.statslab.cam.ac.uk/ frank/evol.html, 1998. · Zbl 0946.93028
[6] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management,” in Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’01), San Diego, Calif, USA, August 2001.
[7] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” in Proceedings of the 7th International Workshop on Quality of Service (IWQoS ’99), pp. 260-262, 1999.
[8] W. Feng, D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gateway,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM ’99), vol. 3, pp. 1320-1328, 1999.
[9] S. Floyd, R. Gummadi, and S. Schenker, “Adaptive RED: an algorithm for increasing the robustness of RED’s active queue management,” Technical Report, 2001, http://www.icir.org/floyd/papers/adaptiveRed.pdf.
[10] R. J. La, P. Ranjan, and E. H. Abed, “Analysis of adaptive random early dection (Adaptive RED),” in Proceedings of the 18th International Teletraffic Congress (ITC ’03), Berlin, Germany, 2003.
[11] P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-RED,” IEEE/ACM Transactions on Networking, vol. 12, no. 6, pp. 1079-1092, 2004. · doi:10.1109/TNET.2004.838600
[12] L. Chen, X. F. Wang, and Z. Z. Han, “Controlling bifurcation and chaos in Internet congestion control model,” International Journal of Bifurcation and Chaos, vol. 14, no. 5, pp. 1863-1876, 2004. · Zbl 1129.37362 · doi:10.1142/S0218127404010217
[13] J. H. C. Nga, H. H. C. Iu, S. H. Ling, and H. K. Lam, “Comparative study of stability in different TCP/RED models,” Chaos, Solitons and Fractals, vol. 37, no. 4, pp. 977-987, 2008. · doi:10.1016/j.chaos.2008.01.013
[14] S. Flyod, “Recommendation on using the “gentle” variant of RED,” http://www.icir.org/floyd/red/gentle.html, 2000.
[15] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 945-959, 2002. · doi:10.1109/TAC.2002.1008360
[16] S. Liu, T. Basar, and R. Srikant, “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1068-1081, 2005. · doi:10.1109/TNET.2005.857110
[17] S. Guo, X. Liao, C. Li, and D. Yang, “Stability analysis of a novel exponential-RED model with heterogeneous delays,” Computer Communications, vol. 30, no. 5, pp. 1058-1074, 2007. · doi:10.1016/j.comcom.2006.11.003
[18] C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, “LRED: a robust and responsive AQM algorithm using packet loss ratio measurement,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 1, pp. 29-43, 2007. · doi:10.1109/TPDS.2007.253279
[19] H. Javam and M. Analoui, “SARED: stabilized ARED,” in Proceedings of the International Conference on Communication Technology (ICCT ’06), pp. 1-4, 2006. · doi:10.1109/ICCT.2006.341669
[20] J. Sun, K. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED: to improve the performance of RED,” IEEE Communications Letters, vol. 7, no. 8, pp. 406-408, 2003. · doi:10.1109/LCOMM.2003.815653
[21] L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED systems in AQM routers,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1393-1398, 2006. · doi:10.1109/TAC.2006.876802
[22] B. Zheng and M. Atiquzzaman, “A framework to determine bounds of maximum loss rate parameter of RED queue for next generation routers,” Journal of Network and Computer Applications, vol. 31, no. 4, pp. 429-445, 2008. · doi:10.1016/j.jnca.2008.02.003
[23] B. Zheng and M. Atiquzzaman, “A framework to determine the optimal weight parameter of RED in next-generation Internet routers,” International Journal of Communication Systems, vol. 21, no. 9, pp. 987-1008, 2008. · doi:10.1002/dac.932
[24] N. Bigdeli and M. Haeri, “Time-series analysis of TCP/RED computer networks, an empirical study,” Chaos, Solitons and Fractals, vol. 39, no. 2, pp. 784-800, 2009. · doi:10.1016/j.chaos.2007.01.080
[25] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, IEEE Computer Society Digital Library, IEEE Computer Society, http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.162, 2009.
[26] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[27] M. Li and P. Borgnat, “Forward for the special issue on traffic modeling, its computations and applications,” Telecommunication Systems, vol. 43, no. 3-4, pp. 181-195, 2010. · doi:10.1007/s11235-009-9206-5
[28] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic analysis of RED,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM ’01), vol. 3, pp. 1510-1519, 2001.