×

On the transitivity of a parametric family of cardinality-based similarity measures. (English) Zbl 1191.68706

Summary: We introduce a parametric family of cardinality-based similarity measures for ordinary sets (on a finite universe) harbouring numerous well-known similarity measures. We characterize the Łukasiewicz-transitive and product-transitive members of this family. Their importance derives from their one-to-one correspondence with pseudo-metrics. Fuzzification schemes based on a commutative quasi-copula are then used to transform these similarity measures for ordinary sets into similarity measures for fuzzy sets, rendering them applicable on graded feature set representations of objects. The main result of this paper is that transitivity, and hence also the corresponding dual metric interpretation, is preserved along this fuzzification process.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03E72 Theory of fuzzy sets, etc.
Full Text: DOI

References:

[1] Bouchon-Meunier, B.; Rifqi, M.; Bothorel, S., Towards general measures of comparison of objects, Fuzzy Sets Syst., 84, 143-153 (1996) · Zbl 0917.94028
[2] De Baets, B., Coimplicators, the forgotten connectives, Tatra Mt. Math. Publ., 12, 229-240 (1997) · Zbl 0954.03029
[3] De Baets, B.; De Meyer, H., On the existence and construction of T-transitive closures, Inform. Sci., 152, 167-179 (2003) · Zbl 1040.03039
[4] De Baets, B.; De Meyer, H., Transitivity-preserving fuzzification schemes for cardinality-based similarity measures, Eur. J. Oper. Res., 160, 726-740 (2005) · Zbl 1061.90080
[5] De Baets, B.; De Meyer, H., Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity, Fuzzy Sets Syst., 52, 249-270 (2005) · Zbl 1114.91031
[6] B. De Baets, H. De Meyer, A cardinality-based approach to the (symmetric) difference of fuzzy sets, submitted for publication.; B. De Baets, H. De Meyer, A cardinality-based approach to the (symmetric) difference of fuzzy sets, submitted for publication.
[7] De Baets, B.; De Meyer, H.; De Schuymer, B.; Jenei, S., Cyclic evaluation of transitivity of reciprocal relations, Social Choice Welfare, 26, 217-238 (2006) · Zbl 1158.91338
[8] De Baets, B.; De Meyer, H.; Naessens, H., A class of rational cardinality-based similarity measures, J. Comput. Appl. Math., 132, 51-69 (2001) · Zbl 0985.03045
[9] De Baets, B.; Janssens, S.; De Meyer, H., Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets Syst., 157, 1463-1476 (2006) · Zbl 1106.03046
[10] De Baets, B.; Mesiar, R., Pseudo-metrics and T-equivalences, J. Fuzzy Math., 5, 471-481 (1997) · Zbl 0883.04007
[11] De Baets, B.; Mesiar, R., Metrics and T-equalities, J. Math. Anal. Appl., 267, 531-547 (2002) · Zbl 0996.03035
[12] De Meyer, H.; Naessens, H.; De Baets, B., Algorithms for computing the min-transitive closure and associated partition tree of a symmetric fuzzy relation, Eu. J. Oper. Res., 155, 226-238 (2004) · Zbl 1043.90087
[13] Díaz, S.; De Baets, B.; Montes, S., Additive decomposition of fuzzy pre-orders, Fuzzy Sets Syst., 158, 830-842 (2007) · Zbl 1119.06002
[14] Díaz, S.; Montes, S.; De Baets, B., Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Syst., 15, 275-286 (2007)
[15] Dice, L., Measures of the amount of ecologic associations between species, Ecology, 26, 297-302 (1945)
[16] Dubois, D.; Prade, H., Fuzzy cardinality and the modelling of imprecise quantification, Fuzzy Sets Syst., 16, 199-230 (1985) · Zbl 0601.03006
[17] Durante, F.; Sempi, C., Semicopulæ, Kybernetika, 41, 315-328 (2005) · Zbl 1249.26021
[18] Fono, L. A.; Gwet, H.; Bouchon-Meunier, B., Fuzzy implication operators for difference operations for fuzzy sets and cardinality-based measures of comparison, Eur. J. Oper. Res., 183, 314-326 (2007) · Zbl 1144.90012
[19] Frank, M., On the simultaneous associativity of \(f(x,y)\) and \(x+y\)−\(f(x,y)\), Aequationes Math., 19, 141-160 (1979) · Zbl 0444.39003
[20] Genest, C.; Quesada-Molina, J. J.; Rodríguez-Lallena, J. A.; Sempi, C., A characterization of quasi-copulas, J. Multivariate Anal., 69, 193-205 (1999) · Zbl 0935.62059
[21] Gower, J.; Legendre, P., Metric and euclidean properties of dissimilarity coefficients, J. Classificat., 3, 5-48 (1986) · Zbl 0592.62048
[22] Jaccard, P., Nouvelles recherches sur la distribution florale, Bull. Soc. Vaudoise Sci Naturelles, 44, 223-270 (1908)
[23] Janssens, S.; De Baets, B.; De Meyer, H., Bell-type inequalities for quasi-copulas, Fuzzy Sets Syst., 148, 263-278 (2004) · Zbl 1057.81011
[24] Janssens, S.; De Baets, B.; De Meyer, H., Bell-type inequalities for parametric families of triangular norms, Kybernetika, 40, 89-106 (2004) · Zbl 1249.54015
[25] Klement, E.; Mesiar, R.; Pap, E., Triangular norms, Trends in Logic, Studia Logica Library, vol. 8 (2000), Kluwer: Kluwer Dordrecht · Zbl 0972.03002
[26] Klement, E.; Mesiar, R.; Pap, E., Invariant copulas, Kybernetika, 38, 275-285 (2002) · Zbl 1264.62045
[27] Nelsen, R., An Introduction to Copulas, Lecture Notes in Statistics, vol. 139 (2000), Springer-Verlag
[28] Pappis, C.; Karacapilidis, N., A comparative assessment of measures of similarity of fuzzy values, Fuzzy Sets Syst., 56, 171-174 (1993) · Zbl 0795.04007
[29] Pykacz, J.; D’Hooghe, B., Bell-type inequalities in fuzzy probability calculus, Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., 9, 263-275 (2001) · Zbl 1113.03344
[30] Ralescu, D., Cardinality, quantifiers and the aggregation of fuzzy criteria, Fuzzy Sets Syst., 69, 355-365 (1995) · Zbl 0844.04007
[31] Rogers, D.; Tanimoto, T., A computer program for classifying plants, Science, 132, 1115-1118 (1960)
[32] Sneath, P.; Sokal, R., Numerical Taxonomy (1973), WH Freeman: WH Freeman San Francisco · Zbl 0285.92001
[33] Sokal, R.; Michener, C., A statistical method for evaluating systematic relationships, Univ. Kansas Sci. Bull., 38, 1409-1438 (1958)
[34] Tolias, Y.; Panas, S.; Tsoukalas, L., Generalized fuzzy indices for similarity matching, Fuzzy Sets Syst., 120, 255-270 (2001) · Zbl 1013.68189
[35] Tversky, A., Features of similarity, Psychol. Rev., 84, 327-352 (1977)
[36] Wang, X.; De Baets, B.; Kerre, E., A comparative study of similarity measures, Fuzzy Sets Syst., 73, 259-268 (1995) · Zbl 0852.04011
[37] Wygralak, M., Fuzzy cardinals based on the generalized equality of fuzzy subsets, Fuzzy Sets Syst., 18, 338-353 (1986) · Zbl 0597.03034
[38] Zadeh, L., Fuzzy sets, Inform. Control, 8, 338-353 (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.