zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic image encryption design using Tompkins-Paige algorithm. (English) Zbl 1191.68774
Summary: We present a new permutation-substitution image encryption architecture using chaotic maps and Tompkins-Paige algorithm. The proposed encryption system includes two major parts, chaotic pixels permutation and chaotic pixels substitution. A logistic map is used to generate a bit sequence, which is used to generate pseudorandom numbers in Tompkins-Paige algorithm, in 2D permutation phase. Pixel substitution phase includes two process, the tent pseudorandom image generator and modulo addition operation. All parts of the proposed chaotic encryption system are simulated. Uniformity of the histogram of the proposed encrypted image is justified using the chi-square test, which is less than $\chi^{2}(255, 0.05)$. The vertical, horizontal, and diagonal correlation coefficients, as well as their average and RMS values for the proposed encrypted image are calculated that is about 13% less than previous researches. To quantify the difference between the encrypted image and the corresponding plain-image, three measures are used. These are MAE, NPCR, and UACI, which are improved in our proposed system considerably. NPCR of our proposed system is exactly the ideal value of this criterion. The key space of our proposed method is large enough to protect the system against any Brute-force and statistical attacks.

68U10Image processing (computing aspects)
68P25Data encryption
68W05Nonnumerical algorithms
Full Text: DOI EuDML
[1] Y. V. Mitra, S. Rao, and S. R. M. Prasanna, “A new image encryption approach using combinational permutation techniques,” International Journal of Computer Science, vol. 1, no. 2, pp. 127-131, 2006.
[2] D. Van de Ville, W. Philips, R. Van de Walle, and I. Lemahieu, “Image scrambling without bandwidth expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 6, pp. 892-897, 2004. · doi:10.1109/TCSVT.2004.828325
[3] M. Yang, N. Bourbakis, and S. Li, “Data-image-video encryption,” IEEE Potentials, vol. 23, no. 3, pp. 28-34, 2004. · doi:10.1109/MP.2004.1341784
[4] J. Fridrich, “Image encryption based on chaotic maps,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1105-1110, 1997.
[5] G. Chen, Y. Mao, and C. K. Chui, “A symmetric image encryption scheme based on 3D chaotic cat maps,” Chaos, Solitons & Fractals, vol. 21, no. 3, pp. 749-761, 2004. · Zbl 1049.94009 · doi:10.1016/j.chaos.2003.12.022
[6] Y. Mao, G. Chen, and S. Lian, “A novel fast image encryption scheme based on 3D chaotic baker maps,” International Journal of Bifurcation and Chaos, vol. 14, no. 10, pp. 3613-3624, 2004. · Zbl 1064.94509 · doi:10.1142/S021812740401151X
[7] Z.-H. Guan, F. Huang, and W. Guan, “Chaos-based image encryption algorithm,” Physics Letters A, vol. 346, no. 1-3, pp. 153-157, 2005. · Zbl 1195.94056 · doi:10.1016/j.physleta.2005.08.006
[8] S. Lian, J. Sun, and Z. Wang, “A block cipher based on a suitable use of the chaotic standard map,” Chaos, Solitons & Fractals, vol. 26, no. 1, pp. 117-129, 2005. · Zbl 1093.37504 · doi:10.1016/j.chaos.2004.11.096
[9] L. Zhang, X. Liao, and X. Wang, “An image encryption approach based on chaotic maps,” Chaos, Solitons & Fractals, vol. 24, no. 3, pp. 759-765, 2005. · Zbl 1083.94011 · doi:10.1016/j.chaos.2004.09.035
[10] H. Gao, Y. Zhang, S. Liang, and D. Li, “A new chaotic algorithm for image encryption,” Chaos, Solitons & Fractals, vol. 29, no. 2, pp. 393-399, 2006. · Zbl 1096.94006 · doi:10.1016/j.chaos.2005.08.110
[11] Q. Zhou, K.-W. Wong, X. Liao, T. Xiang, and Y. Hu, “Parallel image encryption algorithm based on discretized chaotic map,” Chaos, Solitons & Fractals, vol. 38, no. 4, pp. 1081-1092, 2008. · doi:10.1016/j.chaos.2007.01.034
[12] A. N. Pisarchik and M. Zanin, “Image encryption with chaotically coupled chaotic maps,” Physica D, vol. 237, no. 20, pp. 2638-2648, 2008. · Zbl 1148.94431 · doi:10.1016/j.physd.2008.03.049
[13] N. K. Pareek, V. Patidar, and K. K. Sud, “Image encryption using chaotic logistic map,” Image and Vision Computing, vol. 24, no. 9, pp. 926-934, 2006. · doi:10.1016/j.imavis.2006.02.021
[14] M. S. Ehsani and S. E. Borujeni, “Fast Fourier transform speech scrambler,” in Proceedings of the 1st International IEEE Symposium on Intelligent Systems, vol. 1, pp. 248-251, 2002.
[15] S. E. Borujeni and A. Zakerolhoseini, “Permutation based image encryption using pseudo random number generator and Tompkins-Paige algorithm,” in Proceedings of the International Conference on Robotics, Vision, Information and Signal Processing, pp. 478-481, Penang, Malaysia, 2007.
[16] C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Technical Journal, vol. 28, pp. 656-715, 1949. · Zbl 1200.94005
[17] D. R. Stinson, Cryptography: Theory and Practice, CRC Press Series on Discrete Mathematics and Its Applications, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2nd edition, 2002.
[18] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer, New York, NY, USA, 1997. · Zbl 0867.58043
[19] B. Furht and D. Kirovski, Multimedia Security Handbook, CRC Press, Boca Raton, Fla, USA, 2005.
[20] J.-C. Yen and J.-I. Guo, “A new chaotic key-based design for image encryption and decryption,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS /00), vol. 4, pp. 49-52, Geneva, Switzerland, May 2000. · doi:10.1109/ISCAS.2000.858685
[21] L. P. L. de Oliveira and M. Sobottka, “Cryptography with chaotic mixing,” Chaos, Solitons & Fractals, vol. 35, no. 3, pp. 466-471, 2008. · Zbl 1139.94005 · doi:10.1016/j.chaos.2006.05.049
[22] S. Lian, J. Sun, and Z. Wang, “Security analysis of a chaos-based image encryption algorithm,” Physica A, vol. 351, no. 2-4, pp. 645-661, 2005. · doi:10.1016/j.physa.2005.01.001
[23] W. Yuanzhi, R. Guangyong, J. Julang, Z. Jian, and S. Lijuan, “Image encryption method based on chaotic map,” in Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA /07), pp. 2558-2560, 2007. · doi:10.1109/ICIEA.2007.4318874
[24] S. Li, G. Chen, and X. Zheng, “Chaos-based encryption for digital images and videos,” in Multimedia Security Handbook, pp. 133-167, CRC Press, Boca Raton, Fla, USA, 2004.
[25] S. E. Borujeni, “Speech encryption based on fast Fourier transform permutation,” in Proceedings of the 7th IEEE International Conference on Electronics, Circuits and Systems (ICECS /00), vol. 1, pp. 290-293, 2000.
[26] K. Sakurai, K. Koga, and T. Muratani, “A speech scrambler using the fast Fourier transform technique,” IEEE Journal on Selected Areas in Communications, vol. 2, no. 3, pp. 434-442, 1984.
[27] G. Polya, Applied Combinatorial Mathematics, Krieger, 1981.
[28] H.-P. Xiao and G.-J. Zhang, “An image encryption scheme based on chaotic systems,” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2707-2711, Dalian, China, 2006. · doi:10.1109/ICMLC.2006.258930
[29] J. Zou, C. Xiong, D. Qi, and R. K. Waro, “The application of chaotic maps in image encryption,” in Proceedings of the 3rd International IEEE Northeast Workshop on Circuits and Systems Conference (NEWCAS /05), pp. 331-334, Quebec City, Canada, 2005. · doi:10.1109/NEWCAS.2005.1496703
[30] H. S. Kwok and W. K. S. Tang, “A fast image encryption system based on chaotic maps with finite precision representation,” Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1518-1529, 2007. · Zbl 1127.94004 · doi:10.1016/j.chaos.2005.11.090
[31] S. E. Borujeni and M. Eshghi, “Design and simulation of encryption system based on PRNG and Tompkins-Paige permutation algorithm using VHDL,” in Proceedings of the International Conference on Robotics, Vision, Information and Signal Processing, pp. 63-67, Penang, Malaysia, 2007.
[32] F. Zhou, G. Cao, and B. Li, “Design of digital image encryption algorithm based on compound chaotic system,” Journal of Harbin Institute of Technology, vol. 14, supplement 2, pp. 30-33, 2007.
[33] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129-2151, 2006. · Zbl 1192.94088 · doi:10.1142/S0218127406015970