zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence theory of abstract approximate deconvolution models of turbulence. (English) Zbl 1191.76058
By using approximate deconvolution, the author develops an abstract approach to modeling the motion of large eddies in a turbulent flow. The first part represents approximate deconvolution models (ADM) and an approximate deconvolution or approximate/asymptotic inverse of the filtering operator $D$. For large eddy simulation (LES), the author examines only two operators which have been studied earlier: the van Cittert deconvolution operator, and the Geurt’s approximate inverse filter. The second part reviews the averaging/filtering in LES and defines the function spaces and norms needed for variational formulation of the scale similarity model. In the third part the author finds conditions on the approximate deconvolution operator $D$ that guarantee that ADM has a weak solution. Thus, the operator $D:L^2(Q)\rightarrow L^2(Q)$, $Q=(0,L)^3,$ $L$ being the period, has to be a self-adjoint positive definite bounded linear operator which commutes with differentiation. The fourth part demonstrates that the weak solution is really a unique strong solution, and that the model satisfies an energy equality rather than inequality and correctly captures the global energy balance of large scales. A few examples of deconvolution operators and their properties are reviewed in the fifth part: the van Cittert deconvolution operator, the accelerated van Cittert deconvolution operator, Tikhonov regularization of a deconvolution operator, the Geurt’s approximate filter inverse and its variation. The main conclusions are given in the sixth part.

76F02Fundamentals of turbulence
76F65Direct numerical and large eddy simulation of turbulence
Full Text: DOI
[1] Adams, N.A., Stolz, S.: Deconvolution methods for subgrid-scale approximation in large eddy simulation. Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, Zurich (2001)
[2] Bertero M. and Boccacci B. (1998). Introduction to Inverse Problems in Imaging. IOP Publishing Ltd., Bristol · Zbl 0914.65060
[3] Berselli L.C., Iliescu T. and Layton W. (2006). Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin · Zbl 1089.76002
[4] Dunca, A., John, V., Layton, W.: The Commutation Error of the Space Averaged Navier-Stokes Equations on a Bounded Domain. Advances in Mathematical Fluid Mechanics 3, pp. 53--78. Birkhaüser Verlag, Basel (2004) · Zbl 1096.35101
[5] Dunca, A.: Space avereged Navier-Stokes equations in the presence of walls. Phd Thesis, University of Pittsburgh (2004)
[6] Dunca, A., Epshteyn, Y.: On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal. 1890--1902 (2006) · Zbl 1128.76029
[7] Foias C., Holm D.D. and Titi E.S. (2001). The Navier-Stokes-alpha model of fluid turbulence. Physica D. 152--153: 505--519 · Zbl 1037.76022 · doi:10.1016/S0167-2789(01)00191-9
[8] Galdi, G.P.: An Introduction to the Navier stokes initial-boundary value problem. Fundamental Directions in Mathematical Fluid Mechanics, pp. 1--70. Birkhäuser, Basel (2000) · Zbl 1108.35133
[9] Galdi G.P. and Layton W.J. (2000). Approximation of the large eddies in fluid motion II: a model for space-filtered flow. Math. Models Methods Appl. Sci. 10: 343--350 · Zbl 1077.76522
[10] Germano M. (1986). Differential filters of elliptic type. Phys. Fluids 29: 1757--1758 · Zbl 0647.76042 · doi:10.1063/1.865650
[11] Geurts B.J. (1997). Inverse modeling for large-eddy simulation. Phys. Fluids 9: 3585--3587 · doi:10.1063/1.869495
[12] John V., Layton W. and Sahin N. (2004). Derivation and analysis of near wall models for channel and recirculating flows. Comput. Math. Appl. 48: 1135--1151 · Zbl 1059.76030 · doi:10.1016/j.camwa.2004.10.011
[13] Kuerten J.G.M., Geurts B.J., Vreman A.W. and Germano M. (1999). Dynamic inverse modelling and its testing in LES of the mixing layer. Phys. Fluids 11: 3778--3785 · Zbl 1149.76442 · doi:10.1063/1.870238
[14] Layton W. and Lewandowski R. (2003). A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16: 1205--1209 · Zbl 1039.76027 · doi:10.1016/S0893-9659(03)90118-2
[15] Layton W. and Lewandowski R. (2006). On a well-posed turbulence model. Discret. Contin. Dyn. Syst. Ser. B 6: 111--128 · Zbl 1089.76028
[16] Layton W. and Neda M. (2006). Truncation of scales by time relaxation. JMAA 325: 788--807 · Zbl 1167.76338
[17] Layton W. and Stanculescu I. (2007). K-41 optimized approximate deconvolution models. IJCSM 1: 396--411 · Zbl 1185.76707 · doi:10.1504/IJCSM.2007.016554
[18] Leray, J.: Sur le movement d’un fluide visqueux emplissant l’espace. Acta Math, vol. 63, pp. 193--248 (1934). Kluwer, Dordrecht (1997) · Zbl 60.0726.05
[19] Sagaut P. (2001). Large Eddy Simulation for Incompressible Flows. Springer, Berlin · Zbl 0964.76002
[20] Stolz S., Adams N.A. and Kleiser L. (2001). The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13: 997--1015 · Zbl 1184.76530 · doi:10.1063/1.1350896
[21] Temam R. (1995). Navier-Stokes equations and nonlinear functional analysis. SIAM, Philadelphia · Zbl 0833.35110