zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Survival of contact processes on the hierarchical group. (English) Zbl 1191.82028
Summary: We consider contact processes on the hierarchical group, where sites infect other sites at a rate depending on their hierarchical distance, and sites become healthy with a constant recovery rate. If the infection rates decay too fast as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand, we derive sufficient conditions on the speed of decay of the infection rates for the process to exhibit a nontrivial phase transition between extinction and survival. For our sufficient conditions, we use a coupling argument that compares contact processes on the hierarchical group with freedom two with contact processes on a renormalized lattice. An interesting novelty in this renormalization argument is the use of a result due to Rogers and Pitman on Markov functionals.

82C20Dynamic lattice systems and systems on graphs
60K35Interacting random processes; statistical mechanics type models; percolation theory
82C28Dynamic renormalization group methods (statistical mechanics)
60J25Continuous-time Markov processes on general state spaces
Full Text: DOI arXiv
[1] Bleher P.M., Major P.: Critical phenomena and universal exponents in statistical physics. On Dyson’s hierarchical model. Ann. Probab. 15(2), 431--477 (1987) · Zbl 0628.60101 · doi:10.1214/aop/1176992155
[2] Brydges D., Evans S.N., Imbrie J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20(1), 82--124 (1992) · Zbl 0742.60067 · doi:10.1214/aop/1176989919
[3] Dawson, D.A.: Stochastic models of evolving information systems. In: CMS Conference Proceedings, vol. 26, pp. 1--14 (Ottawa, Canada, 1998). AMS, Providence (2000) · Zbl 0951.60090
[4] Dawson D.A., Greven A.: Hierarchical models of interacting diffusions: multiple time scale phenomena, phase transition and pattern of cluster-formation. Probab. Theory Relat. Fields 96, 435--473 (1993) · Zbl 0794.60101 · doi:10.1007/BF01200205
[5] Dawson D.A., Gorostiza L.G.: Percolation in a hierarchical random graph. Commun. Stoch. Anal. 1(1), 29--47 (2007) · Zbl 1328.60210
[6] Donnelly P., Kurtz T.G.: A countable representation of the Fleming--Viot measure-valued diffusion. Ann. Probab. 24(2), 698--742 (1996) · Zbl 0869.60074 · doi:10.1214/aop/1039639359
[7] Donnelly P., Kurtz T.G.: Genealogical processes for Fleming--Viot models with selection and recombination. Ann. Appl. Probab. 9(4), 1091--1148 (1999) · Zbl 0964.60075 · doi:10.1214/aoap/1029962866
[8] Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks/Cole, Pacific Grove (1988) · Zbl 0659.60129
[9] Dyson F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91--107 (1969) · Zbl 1306.47082 · doi:10.1007/BF01645907
[10] Fleischmann K., Swart J.M.: Trimmed trees and embedded particle systems. Ann. Probab. 32(3A), 2179--2221 (2004) · Zbl 1048.60063 · doi:10.1214/009117904000000090
[11] Hara T., Hattori T., Watanabe H.: Triviality of hierarchical Ising model in four dimensions. Commun. Math. Phys. 220(1), 13--40 (2001) · Zbl 1001.82044 · doi:10.1007/s002200100440
[12] Holley R.A., Liggett T.M.: The survival of the contact process. Ann. Probab. 6, 198--206 (1978) · Zbl 0375.60111 · doi:10.1214/aop/1176995567
[13] Kurtz T.G.: Martingale problems for conditional distributions of Markov processes. Electron. J. Probab. 3(9), 1--29 (1998) · Zbl 0907.60065
[14] Liggett T.M.: Interacting Particle Systems. Springer, New York (1985) · Zbl 0559.60078
[15] Liggett T.M.: The survival of one-dimensional contact processes in random environments. Ann. Probab. 20, 696--723 (1992) · Zbl 0754.60126 · doi:10.1214/aop/1176989801
[16] Liggett T.M.: Improved upper bounds for the contact process critical value. Ann. Probab. 23, 697--723 (1995) · Zbl 0832.60093 · doi:10.1214/aop/1176988285
[17] Liggett T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Process. Springer, Berlin (1999) · Zbl 0949.60006
[18] Rogers L.C.G., Pitman J.W.: Markov functions. Ann. Probab. 9(4), 573--582 (1981) · Zbl 0466.60070 · doi:10.1214/aop/1176994363
[19] Sawyer S., Felsenstein J.: Isolation by distance in a hierarchically clustered population. J. Appl. Probab. 20, 1--10 (1983) · Zbl 0514.92013 · doi:10.2307/3213715
[20] Swart, J.M.: Extinction versus unbounded growth. Habilitation Thesis of the University Erlangen-Nürnberg, ArXiv:math/0702095v1 (2007)
[21] Swart, J.M.: The contact process seen from a typical infected site. J. Theor. Probab. (2008). doi: 10.1007/s10959-008-0184-4 (ArXiv:math.PR/0507578v5) · Zbl 1175.60085