Robust finite-time \(H _{\infty}\) control for nonlinear jump systems via neural networks. (English) Zbl 1191.93028

Summary: This paper presents a neural network-based robust finite-time \(H _{\infty }\) control design approach for a class of nonlinear Markov jump systems (MJSs). The system under consideration is subject to norm bounded parameter uncertainties and external disturbance. In the proposed framework, the nonlinearities are initially approximated by multilayer feedback neural networks. Subsequently, the neural networks undergo piecewise interpolation to generate a linear differential inclusion model. Then, based on the model, a robust finite-time state-feedback controller is designed such that the nonlinear MJS is finite-time bounded and finite-time stabilizable. The \(H _{\infty }\) control is specified to ensure the elimination of the approximation errors and external disturbances with a desired level. The controller gains can be derived by solving a set of linear matrix inequalities. Finally, simulation results are given to illustrate the effectiveness of the developed theoretic results.


93B36 \(H^\infty\)-control
Full Text: DOI


[1] F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control 50(5), 724–729 (2005) · Zbl 1365.93182 · doi:10.1109/TAC.2005.847042
[2] F. Amato, M. Ariola, C.T. Abdallah, Dynamic output feedback finite-time control of LIT systems subject to parametric uncertainties and disturbances, in Proc. of the European Control Conference (Springer, Berlin, 1999), pp. 1176–1180
[3] F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[4] F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback. Automatica 42(2), 337–342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[5] W. Assawinchaichote, S.K. Nguang, P. Shi, El K. Boukas, H-infinity fuzzy state-feedback control design for nonlinear systems with D-stability constraints: an LMI approach. Math. Comput. Simul. 78(4), 514–531 (2008) · Zbl 1145.93026 · doi:10.1016/j.matcom.2007.07.002
[6] E.K. Boukas, P. Shi, K. Benjelloun, On stabilization of uncertain linear systems with jump parameters. Int. J. Control 72(9), 842–850 (1999) · Zbl 0958.93083 · doi:10.1080/002071799220768
[7] S.P. Boyd, L.E. Ghaoui, E. Feron, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994) · Zbl 0816.93004
[8] Y.Y. Cao, J. Lam, Robust H control of uncertain Markovian jump systems with time-delay. IEEE Trans. Autom. Control 45, 77–83 (2000) · Zbl 0983.93075 · doi:10.1109/9.827358
[9] P. Dorato, Short time stability in linear time-varying systems, in Proc of the IRE International Convention Record, Part 4. New York (1961), pp. 83–87
[10] J.C. Doyle, K. Glover, P. Khargonekar, B.A. Francis, State-space solutions to standard H 2 and H control problems. IEEE Trans. Autom. Control 34, 831–847 (1989) · Zbl 0698.93031 · doi:10.1109/9.29425
[11] C. Gong, B. Su, Robust H-infinity filtering of convex polyhedral uncertain time-delay fuzzy systems. Int. J. Innov. Comput. Inf. Control 4(4), 793–802 (2008)
[12] J.H. Kim, H.B. Park, H state feedback control for generalized continuous/discrete time-delay system. Automatica 35, 1443–1451 (1999) · Zbl 0954.93011 · doi:10.1016/S0005-1098(99)00038-2
[13] N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(1) 1021–1025 (1961)
[14] N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(2) 1141–1146 (1961)
[15] N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22(3) 1289–1294 (1961)
[16] S. Limanond, J. Si, Neural-network-based control design: an LMI approach. IEEE Trans. Neural Netw. 9(6), 1422–1429 (1998) · doi:10.1109/72.728392
[17] C.L. Lin, Control of perturbed systems using neural networks. IEEE Trans. Neural Netw. 9, 1046–1050 (1998) · doi:10.1109/72.712189
[18] C.L. Lin, T.Y. Lin, An H design approach for neural net-based control schemes. IEEE Trans. Autom. Control 46, 1599–1605 (2001) · Zbl 1008.93030 · doi:10.1109/9.956056
[19] X. Mao, Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79(1), 45–67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[20] J. Qiu, H. Yang, P. Shi, Y. Xia, Robust H-infinity control for a class of discrete-time Markovian jump systems with time-varying delays based on delta operator. Circuits Syst. Signal Process. 27(5), 627–643 (2008) · Zbl 1173.93012 · doi:10.1007/s00034-008-9046-7
[21] P. Shi, M. Mahmoud, J. Yi, A. Ismail, Worst case control of uncertain jumping systems with multi-state and input delay information. Inf. Sci. 176(2), 186–200 (2006) · Zbl 1121.93022 · doi:10.1016/j.ins.2004.07.019
[22] C.E. Souza, D.F. Coutinho, Robust stability of a class of uncertain Markov jump nonlinear systems. IEEE Tran. Autom. Control 51(11), 1825–1831 (2006) · Zbl 1366.93480 · doi:10.1109/TAC.2006.883058
[23] J.A.K. Suykens, J. Vandewalle, B.D. Moor, Artificial Neural Networks for Modeling and Control of Non-linear Systems (Kluwer, Boston, 1996)
[24] K. Tanaka, An approach to stability criteria of neural-network control systems. IEEE Trans. Neural Netw. 7(3), 629–642 (1996) · doi:10.1109/72.501721
[25] Y. Wang, Z. Sun, H-infinity control of networked control system via LMI approach. Int. J. Innov. Comput. Inf. Control 3(2), 343–352 (2007)
[26] Y. Wang, L. Xie, C.E. de Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[27] L. Weiss, E.F. Infante, Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 2(2), 54–59 (1967) · Zbl 0168.33903 · doi:10.1109/TAC.1967.1098483
[28] M. Wu, F. Liu, P. Shi, Y. He, R. Yokoyama, Improved free-weighting matrix approach for stability analysis of discrete-time recurrent neural networks with time-varying delay. IEEE Trans. Circuits Syst. II, Express Briefs 55(7), 690–694 (2008) · doi:10.1109/TCSII.2008.921597
[29] L. Wu, P. Shi, H. Gao, C. Wang, Robust H-infinity filtering for 2-D Markovian jump systems. Automatica 44(7), 1849–1858 (2008) · Zbl 1149.93346 · doi:10.1016/j.automatica.2007.10.027
[30] L. Xia, M. Xia, L. Liu, LMI conditions for global asymptotic stability of neural networks with discrete and distributed delays. ICIC Express Lett. 2(3), 257–262 (2008)
[31] S.Y. Xu, T.W. Chen, J. Lam, Robust H filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Autom. Control 48(5), 900–907 (2003) · Zbl 1364.93229 · doi:10.1109/TAC.2003.820138
[32] J. Yi, G. Yang, Y. Zhu, Z. Tang, Dynamics analysis and a coefficient tuning method in a chaotic neural network. ICIC Express Lett. 2(4), 323–330 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.