A methodology for bit error rate prediction in chaos-based communication systems. (English) Zbl 1191.94040

Summary: This paper is devoted to the derivation of an exact analytical expression of the bit error rate for chaos-based DS-CDMA systems. For the studied transmission system, we suppose that synchronization is achieved perfectly, coherent reception is considered, and an Additive White Gaussian Noise channel (AWGN) is assumed. In the first part of the paper, performance of a mono-user system with different chaotic sequences is evaluated and compared in terms of the error probability. This comparison is realized thanks to the probability density function of the bit energy of a chaotic sequence. The bit error rate can be easily derived by numerical integration. In some particular cases, for certain chaotic sequences with known probability density function of bit energy, we propose an analytical expression of the bit error. In the second part of the paper, the performance of a chaos-based DS-CDMA system is evaluated in the multi-user case. A general conclusion is that probability density function of chaos bit energy, for a given spreading factor, can give a clear idea about how to choose a “good” chaotic sequence for improving the performance of the chaos-based CDMA system.


94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A05 Communication theory
37N99 Applications of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI


[1] A. Abdi, C. Tepedelenlioglu, M. Kaveh, G. Giannakis, On estimation of K parameter for Rice fading distribution. IEEE Commun. Lett. 5, 92–94 (2001) · doi:10.1109/4234.913150
[2] S. Azou, C. Pistre, G. Burel, A chaotic direct sequence spread-spectrum system for underwater communication, in Proc. IEEE-Oceans, Biloxi, Mississippi, 29–31 October 2002, pp. 2409–2415
[3] P. Chargé, D. Fournier-Prunaret, V. Guglielmi, Features analysis of a parametric PWL chaotic map and its utilization for secure transmissions. Chaos Solitons Fractals 38, 1411–1422 (2008) · doi:10.1016/j.chaos.2008.02.026
[4] C.C. Chen, K. Yao, K. Umeno, E. Biglieri, Design of spread-spectrum sequences using chaotic dynamical systems and ergodic theory. Proc. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 1110–1114 (2001) · Zbl 1002.94515 · doi:10.1109/81.948438
[5] J. Cheng, N.C. Beaulieu, Accurate DS-CDMA bit-error probability calculation in rayleigh fading. IEEE Trans. Wirel. Commun. 1, 3–15 (2002) · doi:10.1109/7693.975440
[6] H. Dedieu, M.P. Kennedy, M. Hasler, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II 40, 634–642 (1993) · doi:10.1109/82.246164
[7] R. Esposito, Error probabilities for the Nakagami channel. IEEE Trans. Inf. Theory 13, 145–148 (1967) · doi:10.1109/TIT.1967.1053934
[8] S.H. Isabelle, G.W. Wornell, Statistical analysis and spectral estimation techniques for one-dimensional chaotic signals. IEEE Trans. Signal Process. 45, 1495–1997 (1997) · Zbl 0891.62064 · doi:10.1109/78.599984
[9] G. Kaddoum, P. Chargé, D. Roviras, D. Fournier-Prunaret, Comparison of chaotic sequences in a chaos based DS-CDMA system, in Proc. International Symposium on Nonlinear Theory and Its Applications (NOLTA), Vancouver, Canada, 16–19 September 2007 · Zbl 1184.94216
[10] M.P. Kennedy, R. Rovatti, G. Setti, Chaotic Electronics in Telecommunications (CRC Press, Boca Raton, 2000), pp. 151–180, Chap. 6
[11] T. Khoda, A. Tsuneda, Pseudo noise sequences by chaotic nonlinear maps and their correlations properties. Fundam. Electron. Commun. Comput. Sci. 76, 855–862 (1993)
[12] G. Kolumbán, G. Kis, Z. Jákó, M.P. Kennedy, FM-DCSK: A robust modulation scheme for chaotic communications. Trans. Fundam. Electron. Commun. Comput. Sci. 81, 1798–1802 (1998)
[13] G. Kolumbán, B. Vizvári, W. Schwarz, A. Abel, Differential chaos shift keying: A robust coding for chaotic communication, in Proc. Nonlinear Dynamics of Electronic Systems, Seville, Spain, June 1996, pp. 87–92
[14] A.P. Kurian, S. Puthusserypady, S.M. Htut, Performance enhacment of DS/CDMA system using chaotic complex spreading sequence. IEEE Trans. Wirel. Commun. 4, 984–989 (2005) · doi:10.1109/TWC.2005.847028
[15] F.C.M. Lau, C.K. Tse, Chaos-based Digital Communication Systems (Springer, Berlin, 2003), pp. 17–145, Chaps. 2, 3, 4, 5, 6 · Zbl 1030.94002
[16] A.J. Lawrance, G. Ohama, Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Trans. Circuits Syst I, Fundam. Theory Appl. 50, 1391–1400 (2003) · Zbl 1368.94071 · doi:10.1109/TCSI.2003.818612
[17] W.C. Lindsey, Error probabilities for Rician fading multichannel reception of binary and N-ary signals. IEEE Trans. Inf. Theory 10, 339–350 (1964) · doi:10.1109/TIT.1964.1053703
[18] G. Mazzini, G. Setti, R. Rovatti, Chaotic complex spreading sequences for asynchronous DS-CDMA–I: System modeling and results. IEEE Trans. Circuits Syst. I 44, 937–947 (1997) · doi:10.1109/81.633883
[19] G. Mazzini, G. Setti, R. Rovatti, Chaotic complex spreading sequences for asynchronous DS-CDMA–II: Some theoretical performance bounds. IEEE Trans. Circuits Syst. I 45, 496–506 (1998) · Zbl 0932.94002 · doi:10.1109/TCSI.1998.669076
[20] R.L. Peterson, R.E. Zeimer, D.E. Borth, Introduction to Spread Spectrum Communications (Prentice-Hall, New York, 1995)
[21] J.G. Proakis, Digital Communications (McGraw-Hill, New York, 2001), pp. 233–254, Chap. 5
[22] R. Rovatti, G. Setti, G. Mazzini, Toward sequence optimization for chaos-based asynchronous DS-CDMA systems, in Proc. IEEE GLOBECOM, Sydney, Australia, 8–12 November 1998, pp. 2174–2179 · Zbl 0932.94002
[23] P. Stavroulakis, Chaos Applications in Telecommunications (CRC Press, New York, 2006), pp. 14–123, Chaps. 2, 3
[24] M. Sushchik, L.S. Tsimring, A.R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47, 1684–1691 (2000) · doi:10.1109/81.899920
[25] W.M. Tam, F.C.M. Lau, C.K. Tse, An approach to calculating the bit error rate of a coherent chaos-shift-keying digital communication system under a noisy multiuser environment. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 210–223 (2002) · doi:10.1109/81.983868
[26] W.M. Tam, F.C.M. Lau, C.K. Tse, A.J. Lawrance, Exacte analytical bit error rate for multiple access chaos-based communication systems. IEEE Trans. Circuits Syst. II, Express Briefs 51, 473–481 (2004) · doi:10.1109/TCSII.2004.832773
[27] J. Yao, A.J. Lawrance, Bit error rate calculation for multi-user chaos-shift keying communication system. IEICE Trans. Fond. E 87, 2280–2291 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.