zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variance bound of ACF estimation of one block of fGn with LRD. (English) Zbl 1191.94042
Summary: This paper discusses the estimation of autocorrelation function (ACF) of fractional Gaussian noise (fGn) with long-range dependence (LRD). A variance bound of ACF estimation of one block of fGn with LRD for a given value of the Hurst parameter ($H$) is given. The present bound provides a guideline to require the block size to guarantee that the variance of ACF estimation of one block of fGn with LRD for a given $H$ value does not exceed the predetermined variance bound regardless of the start point of the block. In addition, the present result implies that the error of ACF estimation of a block of fGn with LRD depends only on the number of data points within the sample and not on the actual sample length in time. For a given block size, the error is found to be larger for fGn with stronger LRD than that with weaker LRD.

MSC:
94A12Signal theory (characterization, reconstruction, filtering, etc.)
Software:
longmemo
WorldCat.org
Full Text: DOI EuDML
References:
[1] S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0832.94001
[2] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedure, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000. · Zbl 1187.62204
[3] I. Elishakoff and R. H. Lyon, Random Vibration Status and Recent Developments, vol. 14 of Studies in Applied Mechanics, Elsevier, New York, NY, USA, 1986. · Zbl 0702.73042
[4] A. Preumont, Random Vibration and Spectral Analysis, vol. 33 of Studies in Applied Mechanics, Kluwer, London, UK, 1993. · Zbl 0847.70002
[5] J. J. Jensen and M. Dogliani, “Wave-induced ship hull vibrations in stochastic seaways,” Marine Structures, vol. 9, no. 3-4, pp. 353-387, 1996. · doi:10.1016/0951-8339(95)00031-3
[6] X.-K. Gu, J.-J. Hu, and J.-W. Shen, “The frequency characteristics of ship vertical wave bending moments,” Shipbuilding of China, vol. 41, no. 1, pp. 31-38, 2000 (Chinese).
[7] D. Benasciutti and R. Tovo, “Spectral methods for lifetime prediction under wide-band stationary random processes,” International Journal of Fatigue, vol. 27, no. 8, pp. 867-877, 2005. · Zbl 1068.74055 · doi:10.1016/j.ijfatigue.2004.10.007
[8] Technical Software Consultants Limited, “FLAPS: Fatigue Laboratory Applications Package, Version 01:03,” Instron 2165035, UK.
[9] M. Li, “An optimal controller of an irregular wave maker,” Applied Mathematical Modelling, vol. 29, no. 1, pp. 55-63, 2005. · Zbl 1147.76554 · doi:10.1016/j.apm.2004.07.008
[10] M. Li, “An iteration method to adjusting random loading for a laboratory fatigue test,” International Journal of Fatigue, vol. 27, no. 7, pp. 783-789, 2005. · doi:10.1016/j.ijfatigue.2005.01.011
[11] M. Li, “Experimental stability analysis of a test system for doing fatigue tests under random loading,” Journal of Testing and Evaluation, vol. 34, no. 4, pp. 364-367, 2006.
[12] M. Li, Y.-S. Wu, B.-H. Xu, W. Jia, and W. Zhao, “An on-line correction technique of random loading with a real-time signal processor for a laboratory fatigue test,” Journal of Testing and Evaluation, vol. 28, no. 5, pp. 409-414, 2000. · doi:10.1520/JTE12129J
[13] M. Li, B.-H. Xu, and Y.-S. Wu, “An H2-optimal control of random loading for a laboratory fatigue test,” Journal of Testing and Evaluation, vol. 26, no. 6, pp. 619-625, 1998. · doi:10.1520/JTE12121J
[14] F. H. C. Marriott and J. A. Pope, “Bias in the estimation of autocorrelations,” Biometrika, vol. 41, pp. 390-402, 1954. · Zbl 0056.13302 · doi:10.1093/biomet/41.3-4.390
[15] E. Jakeman, E. R. Pike, and S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” Journal of Physics A, vol. 4, no. 4, pp. 517-534, 1971. · doi:10.1088/0305-4470/4/4/015
[16] J. Pickands III, “Spectral estimation with random truncation,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 44-58, 1970. · Zbl 0213.20603 · doi:10.1214/aoms/1177697187
[17] U. Grenander, “Bandwidth and variance in estimation of the spectrum,” Journal of the Royal Statistical Society Series B, vol. 20, no. 1, pp. 152-157, 1958. · Zbl 0091.15003
[18] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proceedings of the IEEE, vol. 70, no. 9, pp. 1055-1096, 1982. · doi:10.1109/PROC.1982.12433
[19] M. Li, “A method for requiring block size for spectrum measurement of ocean surface waves,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 2207-2215, 2006. · doi:10.1109/TIM.2006.884134
[20] J. Beran, Statistics for Long-Memory Processes, vol. 61 of Monographs on Statistics and Applied Probability, Chapman & Hall, New York, NY, USA, 1994. · Zbl 0869.60045
[21] B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, no. 4, pp. 422-437, 1968. · Zbl 0179.47801 · doi:10.1137/1010093
[22] H. E. Hurst, “Long-term storage capacity of reservoirs,” Transactions of American Society of Civil Engineers, vol. 116, pp. 770-808, 1951.
[23] B. B. Mandelbrot and J. R. Wallis, “Noah, Joseph and operational hydrology,” Water Resources Research, vol. 4, no. 5, pp. 909-918, 1968. · doi:10.1029/WR004i005p00909
[24] S. M. Barbosa, M. J. Fernandes, and M. E. Silva, “Long-range dependence in North Atlantic sea level,” Physica A, vol. 371, no. 2, pp. 725-731, 2006. · doi:10.1016/j.physa.2006.03.046
[25] A. J. Lawrance and N. T. Kottegoda, “Stochastic modelling of riverflow time series,” Journal of the Royal Statistical Society-Series A, vol. 140, no. 1, pp. 1-47, 1977. · doi:10.2307/2344516
[26] M. Radziejewski and Z. W. Kundzewicz, “Fractal analysis of flow of the river Warta,” Journal of Hydrology, vol. 200, no. 1-4, pp. 280-294, 1997. · doi:10.1016/S0022-1694(97)00024-3
[27] B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Selected Works of Benoit B. Mandelbrot, Springer, New York, NY, USA, 2002. · Zbl 1007.01020
[28] W. Stallings, High-Speed Networks TCP/IP and ATM Design Principles, chapter 8, Prentice-Hall, Upper Saddle River, NJ, USA, 1998.
[29] M. Li, “An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition,” Computers and Security, vol. 23, no. 7, pp. 549-558, 2004. · doi:10.1016/j.cose.2004.04.005
[30] B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Selected Works of Benoit B. Mandelbrot, Springer, New York, NY, USA, 2002. · Zbl 1007.01020
[31] J. Levy-Vehel, E. Lutton, and C. Tricot, Eds., Fractals in Engineering, Springer, Berlin, Germany, 1997.
[32] M. Li and W. Zhao, “Detection of variations of local irregularity of traffic under DDOS flood attack,” Mathematical Problems in Engineering, vol. 2008, Article ID 475878, 11 pages, 2008. · Zbl 1189.68114 · doi:10.1155/2008/475878 · eudml:45486
[33] M. Li, “Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-A further study,” Applied Mathematical Modelling, vol. 31, no. 3, pp. 625-631, 2007. · Zbl 1197.94006 · doi:10.1016/j.apm.2005.11.029
[34] M. Li, “Change trend of averaged Hurst parameter of traffic under DDOS flood attacks,” Computers & Security, vol. 25, no. 3, pp. 213-220, 2006. · doi:10.1016/j.cose.2005.11.007
[35] C. Cattani, “Shannon wavelets theory,” Mathematical Problems in Engineering, vol. 2008, Article ID 164808, 24 pages, 2008. · Zbl 1162.42314 · doi:10.1155/2008/164808 · eudml:55461
[36] E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. · Zbl 1163.83319 · doi:10.1155/2008/410156 · eudml:55558
[37] C. Cattani, “Harmonic wavelet analysis of a localized fractal,” International Journal of Engineering and Interdisciplinary Mathematics, vol. 1, no. 1, pp. 35-44, 2009.
[38] P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, “Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail,” Telecommunication Systems, 2009. · doi:10.1007/s11235-009-9025-6
[39] M. Li, W.-S. Chen, and L. Han, “Correlation matching method of the weak stationarity test of LRD traffic,” Telecommunication Systems, 2009. · doi:10.1007/s11235-009-9206-5
[40] L. Janowski and P. Owezarski, “Assessing the accuracy of using aggregated traffic traces in network engineering,” Telecommunication Systems, 2009. · doi:10.1007/s11235-009-9210-9
[41] C. Li and W. Zhao, “Stochastic performance analysis of non-feedforward networks,” Telecommunication Systems, 2009. · doi:10.1007/s11235-009-9211-8
[42] M. Li, “Fractal time series-a tutorial,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[43] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel & Distributed Systems, 2009, http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.162.
[44] K.-L. Tian and M. Li, “A reliable anomaly detector against low-rate DDOS attack,” International Journal of Electronics and Computers, vol. 1, no. 1, pp. 1-6, 2009.
[45] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems. In press.
[46] E. Jakeman and D. L. Jordan, “Statistical accuracy of measurements on Gaussian random fractals,” Journal of Physics D, vol. 23, no. 4, pp. 397-405, 1990. · doi:10.1088/0022-3727/23/4/002
[47] P. Newbold and C. Agiakloglou, “Bias in the sample autocorrelations of fractional noise,” Biometrica, vol. 30, no. 3, pp. 698-702, 1990. · Zbl 0800.62519 · doi:10.1093/biomet/80.3.698
[48] T. Hida, Brownian Motion, vol. 11 of Applications of Mathematics, Springer, New York, NY, USA, 1980. · Zbl 0423.60063
[49] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[50] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[51] M. D. Ortigueira, “Introduction to fractional linear systems, part I: continuous-time systems,” IEE Proceedings: Vision, Image and Signal Processing, vol. 147, no. 1, pp. 62-70, 2000. · doi:10.1049/ip-vis:20000272
[52] M. D. Ortigueira and A. G. Batista, “A fractional linear system view of the fractional brownian motion,” Nonlinear Dynamics, vol. 38, no. 1-4, pp. 295-303, 2004. · Zbl 1115.60044 · doi:10.1007/s11071-004-3762-8
[53] M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006. · doi:10.1142/S0219477506003604
[54] R. J. Adler, The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistic, John Wiley & Sons, New York, NY, USA, 1981. · Zbl 0478.60059
[55] P. Hall and R. Roy, “On the relationship between fractal dimension and fractal index for stationary stochastic processes,” The Annals of Applied Probability, vol. 4, no. 1, pp. 241-253, 1994. · Zbl 0798.60035 · doi:10.1214/aoap/1177005210
[56] G. Chan, P. Hall, and D. S. Poskitt, “Periodogram-based estimators of fractal properties,” The Annals of Statistics, vol. 23, no. 5, pp. 1684-1711, 1995. · Zbl 0843.62090 · doi:10.1214/aos/1176324319
[57] J. T. Kent and A. T. A. Wood, “Estimating the fractal dimension of a locally self-similar gaussian process by using increments,” Journal of the Royal Statistical Society Series B, vol. 59, no. 3, pp. 679-699, 1997. · Zbl 0889.62072
[58] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, NY, USA, 1982. · Zbl 0504.28001
[59] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, NY, USA, 1961. · Zbl 0121.00103
[60] M. Li and C.-H. Chi, “A correlation-based computational model for synthesizing long-range dependent data,” Journal of the Franklin Institute, vol. 340, no. 6-7, pp. 503-514, 2004. · Zbl 1051.93095 · doi:10.1016/j.jfranklin.2003.09.002
[61] Y. Chen, R. Sun, and A. Zhou, “An overview of fractional order signal processing (FOSP) techniques,” in Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE ’07), vol. 5, pp. 1205-1222, Las Vegas, Nev, USA, September 2007, DETC2007-34228.
[62] Y.-Q. Chen, R. Sun, and A. Zhou, “An improved Hurst parameter estimator based on fractional Fourier transform,” Telecommunication Systems, 2009. · doi:10.1007/s11235-009-9207-4