zbMATH — the first resource for mathematics

A generalization of Griffiths’ theorem on rational integrals. II. (English) Zbl 1192.14009
Let \(Y\) be a reduced hypersurface in \(X = \mathbb P^n\) defined by a polynomial \(f\) of degree \(d,\) and let \(F\) and \(P\) denote the global Hodge and pole order filtration on \(H^n(X\setminus Y, \mathbb C),\) respectively. The authors show that for any sufficient general hypersurface \(Y\) whose singular locus \(\text{Sing}\, Y\) consists of one ordinary double point and \(d=3,\) \(n\geq 5,\) or \(d=4,\) \(n\geq 3,\) one has \(F^p \neq P^p,\) where \(1+ (n+1)/d \leq p \leq n -[n/2].\) The proof is based on the construction of a series of examples. Under additional assumptions they then compute \(\text{Gr}_F^p H^n(X\setminus Y, \mathbb C),\) \(p< n - [n/2],\) for a hypersurface \(Y\) with some ordinary double singular points in terms of graded pieces of the Jacobian ideal of \(f\) and of powers of the homogeneous ideal of \(\text{Sing}\, Y.\)
In fact, their computations partially support a Conjecture by L. Wotzlaw [Intersection cohomology of hypersurfaces (Dissertation), Humboldt Universität zu Berlin (2007)] which is a generalization of the Griffiths’ theorem on rational integrals [P. A. Griffiths, Ann. Math. (2) 90, 460–495, 496–541 (1969; Zbl 0215.08103)].
[For part I, cf. Duke Math. J. 135, No. 2, 303–326 (2006; Zbl 1117.14012)].

14C20 Divisors, linear systems, invertible sheaves
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
14F40 de Rham cohomology and algebraic geometry
14J70 Hypersurfaces and algebraic geometry
32S20 Global theory of complex singularities; cohomological properties
55R55 Fiberings with singularities in algebraic topology
57R60 Homotopy spheres, Poincaré conjecture
57R70 Critical points and critical submanifolds in differential topology
Full Text: DOI arXiv
[1] W. Barth, Two projective surfaces with many nodes, admitting the symmetries of the icosahedron, J. Algebraic Geom. 5 (1996), 173–186. · Zbl 0860.14032
[2] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5–171.
[3] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103–161. · Zbl 0186.26101
[4] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in Math, 163, Springer-Verlag, Berlin, 1970. · Zbl 0244.14004
[5] ——, Théorie de Hodge I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 425–430, Gauthier-Villars, Paris, 1971; II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57; III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77.
[6] P. Deligne and A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. Ecole Norm. Sup. (4) 23 (1990), 645–656. · Zbl 0743.14028
[7] A. Dimca, Singularities and topology of hypersurfaces, Springer-Verlag, New York, 1992. · Zbl 0753.57001
[8] ——, Hodge numbers of hypersurfaces, Abh. Math. Sem. Univ. Hamburg 66 (1996), 377–386. · Zbl 0879.14018
[9] A. Dimca and M. Saito, A generalization of Griffiths’s theorem on rational integrals, Duke Math. J. 135 (2006), 303–326. · Zbl 1117.14012
[10] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), 135–162. · Zbl 0448.55004
[11] M. Green, Infinitesimal method in Hodge theory, Algebraic cycles and Hodge theory (Torino, 1993), Lecture Notes in Math., 1594, pp. 1–92, Springer-Verlag, Berlin, 1994. · Zbl 0846.14001
[12] P. Griffiths, On the period of certain rational integrals I, II, Ann. of Math. (2) 90 (1969), 460–541. JSTOR: · Zbl 0215.08103
[13] O. A. Ivanov and N. Yu. Netsvetaev, Estimates of the number of singularities of a complex hypersurface and related questions, J. Math. Sci. (New York) 91 (1998), 3448–3455. · Zbl 0907.14018
[14] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, pp. 134–142, Springer-Verlag, Berlin, 1983. · Zbl 0566.32022
[15] B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, Lecture Notes in Math., 459, pp. 98–119, Springer-Verlag, Berlin, 1975. · Zbl 0308.32007
[16] ——, Polynôme de Bernstein–Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101–102 (1983), 243–267.
[17] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221–333. · Zbl 0727.14004
[18] ——, On \(b\) -function, spectrum and rational singularity, Math. Ann. 295 (1993), 51–74. · Zbl 0788.32025
[19] ——, On the Hodge filtration of Hodge modules, RIMS preprint 1078, May 1996, math.AG/0504177.
[20] ——, e-mail to L. Wotzlaw, Jan. 27, 2005.
[21] J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Nordic Summer School, Oslo, 1976), pp. 525–563, Sijthoff & Noordhoff, Alphen a/d Rijn, 1977. · Zbl 0373.14007
[22] A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), 1294–1297. · Zbl 0537.14003
[23] L. Wotzlaw, Intersection cohomology of hypersurfaces, Ph.D. dissertation (preprint), Humboldt Universität zu Berlin, August 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.