Novel robust stability criteria for uncertain systems with time-varying delay. (English) Zbl 1192.34087

This paper is concerned with delay-dependent stability and robust stability criteria for linear systems with time-varying delay and norm-bounded uncertainties. Based on the Lyapunov method, new criteria are obtained by using integral inequalities, slack matrices and a newly established convex combination condition. Numerical examples are given to illustrate the improvement on the conservatism of the delay bound over some reported results in the literature.


34K20 Stability theory of functional-differential equations
34K06 Linear functional-differential equations
Full Text: DOI


[1] Fridman, E.; Shaked, U., Delay-dependent stability and \(H_\infty\) control: constant and time-varying delays, Int. J. Contr., 76, 48-60 (2003) · Zbl 1023.93032
[2] Fridman, E.; Shaked, U., An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Contr., 47, 1931-1937 (2002) · Zbl 1364.93564
[3] Gu, K., Discretized LMI set in the stability problem of linear uncertain time-delay systems, Int. J. Contr., 68, 923-934 (1997) · Zbl 0986.93061
[4] Han, Q. L., On robust stability of neutral systems with time-varying discrete delay and norm bounded uncertainty, Automatica, 40, 1087-1092 (2004) · Zbl 1073.93043
[5] He, Y.; Wang, Q. G.; Xie, L.; Lin, C., Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Trans. Automat. Contr., 52, 293-298 (2007) · Zbl 1366.34097
[6] He, Y.; Wu, M.; She, J. H.; Liu, G. P., Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE Trans. Automat. Contr., 49, 828-832 (2004) · Zbl 1365.93368
[7] Jiang, X.; Han, Q. L., Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica, 42, 1059-1065 (2006) · Zbl 1135.93024
[8] Jiang, X.; Han, Q. L., \(H_\infty\) control for linear systems with interval time-varying delay, Automatica, 41, 2099-2106 (2005) · Zbl 1100.93017
[9] Jing, X. J.; Tan, D. L.; Wang, Y. C., An LMI approach to stability of systems with severe time-delay, IEEE Trans. Automat. Contr., 49, 1192-1195 (2004) · Zbl 1365.93226
[10] Kolmanovskii, V. B.; Myskis, A. D., Introduction to the Theory and Applications of Functional Differential Equations (1999), Kluwer, Academic Publishers: Kluwer, Academic Publishers Dordrecht
[11] Lien, C. H., Delay-dependent stability criteria for uncertain neutral systems with multiple time-varying delays via LMI approach, IEE Proc. Contr. Theory Appl., 148, 442-447 (2005)
[12] Lin, C.; Wang, Q. G.; Lee, T. H., A less conservative robust stability test for linear uncertain time-delay systems, IEEE Trans. Automat. Contr., 51, 87-91 (2006) · Zbl 1366.93469
[13] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S., Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Contr., 74, 1447-1455 (2001) · Zbl 1023.93055
[14] Niculescu, S. I., Delay Effects on Stability: A Robust Control Approach (2001), Springer Verlag: Springer Verlag Berlin
[15] Park, P.; Jeong, W., Stability and robust stability for systems with a time-varying delay, Automatica, 43, 1855-1858 (2007) · Zbl 1120.93043
[16] Richard, J. P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 1667-1694 (2003) · Zbl 1145.93302
[17] Wu, M.; He, Y.; She, J. H.; Liu, G. P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 1435-1439 (2004) · Zbl 1059.93108
[18] Xie, L., Output feedback \(H_\infty\) control of systems with parameter uncertainty, Int. J. Contr., 63, 741-750 (1996) · Zbl 0841.93014
[19] Yue, D.; Han, Q. L., A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model, IEEE Trans. Circuit Syst., 51, 685-689 (2004)
[20] Zhang, X. M.; Wu, M.; She, J. H.; He, Y., Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica, 41, 1405-1412 (2005) · Zbl 1093.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.