zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global well posedness for the Maxwell-Navier-Stokes system in 2D. (English) Zbl 1192.35133
Summary: We prove global existence of regular solutions to the full MHD system (or more precisely the Maxwell-Navier-Stokes system) in 2D. We also provide an exponential growth estimate for the $H^s$ norm of the solution when the time goes to infinity.

MSC:
35Q30Stokes and Navier-Stokes equations
35Q61Maxwell equations
82C31Stochastic methods in time-dependent statistical mechanics
76A05Non-Newtonian fluids
76W05Magnetohydrodynamics and electrohydrodynamics
76M35Stochastic analysis (fluid mechanics)
WorldCat.org
Full Text: DOI
References:
[1] Abidi, H.; Hmidi, T.: Résultats d’existence dans des espaces critiques pour le système de la MHD inhomogène, Ann. math. Blaise Pascal 14, No. 1, 103-148 (2007) · Zbl 1175.76039 · doi:10.5802/ambp.230 · numdam:AMBP_2007__14_1_103_0
[2] Amirat, Y.; Hamdache, K.; Murat, F.: Global weak solutions to equations of motion for magnetic fluids, J. math. Fluid mech. 10, No. 3, 326-351 (2008) · Zbl 1162.76408 · doi:10.1007/s00021-006-0234-6
[3] Beale, J. T.; Kato, T.; Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. math. Phys. 94, No. 1, 61-66 (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[4] Biskamp, D.: Nonlinear magnetohydrodynamics, Cambridge monographs on plasma physics 1 (1993)
[5] Bony, J. -M.: Calcul symbolique propagation des singularités pour LES équations aux dérivées partielles non linéaires, Ann. sci. École norm. Sup. (4) 14, No. 2, 209-246 (1981) · Zbl 0495.35024 · numdam:ASENS_1981_4_14_2_209_0
[6] Cannone, M.; Chen, Q.; Miao, C.: A losing estimate for the ideal MHD equations with application to blow-up criterion, SIAM J. Math. anal. 38, No. 6, 1847-1859 (2007) · Zbl 1126.76057 · doi:10.1137/060652002
[7] Chemin, J. -Y.: Fluides parfaits incompressibles, Astérisque 230, 177 (1995) · Zbl 0829.76003
[8] Chemin, J. -Y.; Lerner, N.: Flot de champs de vecteurs non lipschitziens équations de Navier -- Stokes, J. differential equations 121, No. 2, 314-328 (1995) · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[9] Chemin, J. -Y.; Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. anal. 33, No. 1, 84-112 (2001) · Zbl 1007.76003 · doi:10.1137/S0036141099359317
[10] Constantin, P.; Masmoudi, N.: Global well-posedness for a Smoluchowski equation coupled with Navier -- Stokes equations in 2D, Comm. math. Phys. 278, No. 1, 179-191 (2008) · Zbl 1147.35069 · doi:10.1007/s00220-007-0384-2
[11] Davidson, P. A.: An introduction to magnetohydrodynamics, Cambridge texts in applied mathematics (2001)
[12] Díaz, J. I.; Lerena, M. B.: On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics, Math. models methods appl. Sci. 12, No. 10, 1401-1419 (2002) · Zbl 1038.76061 · doi:10.1142/S0218202502002173
[13] Duvaut, G.; Lions, J. -L.: Inéquations en thermoélasticité magnétohydrodynamique, Arch. rational mech. Anal. 46, 241-279 (1972) · Zbl 0264.73027 · doi:10.1007/BF00250512
[14] Gerbeau, J. -F.; Le Bris, C.; Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals, Numerical mathematics and scientific computation (2006) · Zbl 1107.76001
[15] He, C.; Wang, Y.: Remark on the regularity for weak solutions to the magnetohydrodynamic equations, Math. methods appl. Sci. 31, No. 14, 1667-1684 (2008) · Zbl 1153.35064 · doi:10.1002/mma.992
[16] Ibrahim, S.; Majdoub, M.; Masmoudi, N.: Global solutions for a semilinear two-dimensional Klein -- Gordon equation with exponential-type nonlinearity, Comm. pure appl. Math. 59, No. 11, 1639-1658 (2006) · Zbl 1117.35049 · doi:10.1002/cpa.20127
[17] Ibrahim, S.; Majdoub, M.; Masmoudi, N.: Double logarithmic inequality with a sharp constant, Proc. amer. Math. soc. 135, No. 1, 87-97 (2007) · Zbl 1130.46018 · doi:10.1090/S0002-9939-06-08240-2
[18] Kozono, H.; Ogawa, T.; Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces regularity criterion to some semi-linear evolution equations, Math. Z. 242, No. 2, 251-278 (2002) · Zbl 1055.35087 · doi:10.1007/s002090100332
[19] Z. Lei, N. Masmoudi, Y. Zhou, Remarks on the blow up criteria for Oldroyd models, preprint, 2009
[20] Z. Lei, Y. Zhou, BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity, in: DCDS-A, 2009, submitted for publication · Zbl 1171.35452
[21] Lin, F.; Zhang, P.; Zhang, Z.: On the global existence of smooth solution to the 2-D FENE dumbbell model, Comm. math. Phys. 277, No. 2, 531-553 (2008) · Zbl 1143.82035 · doi:10.1007/s00220-007-0385-1
[22] Linshiz, J. S.; Titi, E. S.: Analytical study of certain magnetohydrodynamic-$\alpha $ models, J. math. Phys. 48, No. 6, 065504 (2007) · Zbl 1144.81378 · doi:10.1063/1.2360145
[23] Lions, P. -L.: Mathematical topics in fluid mechanics, vol. 1. Incompressible models, Oxford science publications (1996) · Zbl 0866.76002
[24] Lions, P. -L.; Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows, Chinese ann. Math. ser. B 21, No. 2, 131-146 (2000) · Zbl 0957.35109 · doi:10.1007/BF02484187
[25] Lions, P. -L.; Masmoudi, N.: Global existence of weak solutions to some micro -- macro models, C. R. Math. acad. Sci. Paris 345, No. 1, 15-20 (2007) · Zbl 1117.35312 · doi:10.1016/j.crma.2007.05.011
[26] Masmoudi, N.: Well-posedness for the FENE dumbbell model of polymeric flows, Comm. pure appl. Math. 61, No. 12, 1685-1714 (2008) · Zbl 1157.35088 · doi:10.1002/cpa.20252
[27] Masmoudi, N.; Zhang, P.; Zhang, Z.: Global well-posedness for 2D polymeric fluid models and growth estimate, Physica D 237, No. 10 -- 12, 1663-1675 (2008) · Zbl 1143.76356 · doi:10.1016/j.physd.2008.03.020
[28] Moreau, R.: Magnetohydrodynamics, Fluid mechanics and its applications 3 (1990)
[29] Planchon, F.: An extension of the beale -- Kato -- majda criterion for the Euler equations, Comm. math. Phys. 232, No. 2, 319-326 (2003) · Zbl 1022.35048 · doi:10.1007/s00220-002-0744-x
[30] Sermange, M.; Temam, R.: Some mathematical questions related to the MHD equations, Comm. pure appl. Math. 36, No. 5, 635-664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[31] Temam, R.: Navier -- Stokes equations and nonlinear functional analysis, (1995) · Zbl 0833.35110
[32] Wu, J.: Regularity criteria for the generalized MHD equations, Comm. partial differential equations 33, No. 1 -- 3, 285-306 (2008) · Zbl 1134.76068 · doi:10.1080/03605300701382530
[33] Zhou, Y.: Regularity criteria for the generalized viscous MHD equations, Ann. inst. H. Poincaré anal. Non linéaire 24, No. 3, 491-505 (2007) · Zbl 1130.35110 · doi:10.1016/j.anihpc.2006.03.014 · numdam:AIHPC_2007__24_3_491_0