Albiac, F.; Leránoz, C. The Tsirelson space \(\mathcal T(p)\) has a unique unconditional basis up to permutation for \(0<p<1\). (English) Zbl 1192.46002 Abstr. Appl. Anal. 2009, Article ID 780287, 6 p. (2009). Summary: We show that the \(p\)-convexified Tsirelson space \(\mathcal T{(p)}\) for \(0<p<1\) and all its complemented subspaces with unconditional basis have unique unconditional basis up to permutation. The techniques involved in the proof are different from the methods that have been used in all the other uniqueness results in the nonlocally convex setting. MSC: 46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.) Keywords:\(p\)-convexified Tsirelson; unique unconditional basis up to permutation PDF BibTeX XML Cite \textit{F. Albiac} and \textit{C. Leránoz}, Abstr. Appl. Anal. 2009, Article ID 780287, 6 p. (2009; Zbl 1192.46002) Full Text: DOI OpenURL References: [1] G. Köthe and O. Toeplitz, “Lineare Raume mit unendlich vielen Koordinaten und Ringen unendlicher Matrizen,” Journal für die Reine und Angewandte Mathematik, vol. 171, pp. 193-226, 1934. · Zbl 0009.25704 [2] J. Lindenstrauss and A. Pełczyński, “Absolutely summing operators in Lp-spaces and their applications,” Studia Mathematica, vol. 29, pp. 275-326, 1968. · Zbl 0183.40501 [3] J. Lindenstrauss and M. Zippin, “Banach spaces with a unique unconditional basis,” Journal of Functional Analysis, vol. 3, pp. 115-125, 1969. · Zbl 0174.17201 [4] I. S. Èdel’ and P. Wojtaszczyk, “On projections and unconditional bases in direct sums of Banach spaces,” Studia Mathematica, vol. 56, no. 3, pp. 263-276, 1976. · Zbl 0362.46017 [5] J. Bourgain, P. G. Casazza, J. Lindenstrauss, and L. Tzafriri, “Banach spaces with a unique unconditional basis, up to permutation,” Memoirs of the American Mathematical Society, vol. 54, no. 322, 1985. · Zbl 0575.46011 [6] W. T. Gowers, “A solution to Banach’s hyperplane problem,” The Bulletin of the London Mathematical Society, vol. 26, no. 6, pp. 523-530, 1994. · Zbl 0838.46011 [7] P. G. Casazza and N. J. Kalton, “Uniqueness of unconditional bases in Banach spaces,” Israel Journal of Mathematics, vol. 103, pp. 141-175, 1998. · Zbl 0939.46009 [8] N. J. Kalton, “Orlicz sequence spaces without local convexity,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 81, no. 2, pp. 253-277, 1977. · Zbl 0345.46013 [9] F. Albiac and C. Leránoz, “Uniqueness of unconditional basis in Lorentz sequence spaces,” Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1643-1647, 2008. · Zbl 1140.46002 [10] N. J. Kalton, C. Leránoz, and P. Wojtaszczyk, “Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces,” Israel Journal of Mathematics, vol. 72, no. 3, pp. 299-311, 1990. · Zbl 0753.46013 [11] P. Wojtaszczyk, “Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces. II,” Israel Journal of Mathematics, vol. 97, pp. 253-280, 1997. · Zbl 0874.46007 [12] C. Leránoz, “Uniqueness of unconditional bases of c0(lp), 0<p<1,” Studia Mathematica, vol. 102, no. 3, pp. 193-207, 1992. · Zbl 0812.46003 [13] F. Albiac and C. Leránoz, “Uniqueness of unconditional basis of lp(c0) and lp(l2), 0<p<1,” Studia Mathematica, vol. 150, no. 1, pp. 35-52, 2002. · Zbl 1031.46006 [14] F. Albiac, N. Kalton, and C. Leránoz, “Uniqueness of the unconditional basis of l1(lp) and lp(l1), 0<p<1,” Positivity, vol. 8, no. 4, pp. 443-454, 2004. · Zbl 1084.46002 [15] T. Figiel and W. B. Johnson, “A uniformly convex Banach space which contains no lp,” Compositio Mathematica, vol. 29, pp. 179-190, 1974. · Zbl 0301.46013 [16] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, vol. 233 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2006. · Zbl 1094.46002 [17] P. G. Casazza and T. J. Shura, Tsirel’Son’s Space, vol. 1363 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1989, with an appendix by J. Baker, O. Slotterbeck and R. Aro. · Zbl 0709.46008 [18] L. Tzafriri, “Uniqueness of structure in Banach spaces,” in Handbook of the Geometry of Banach Spaces, Vol. 2, pp. 1635-1669, North-Holland, Amsterdam, The Netherlands, 2003. · Zbl 1058.46006 [19] P. G. Casazza and N. J. Kalton, “Uniqueness of unconditional bases in c0-products,” Studia Mathematica, vol. 133, no. 3, pp. 275-294, 1999. · Zbl 0939.46010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.