×

Orthologic tetrahedra with intersecting edges. (English) Zbl 1192.51012

Summary: Two tetrahedra are called orthologic if the lines through vertices of one and perpendicular to corresponding faces of the other are intersecting. This is equivalent to the orthogonality of non-corresponding edges. We prove that the additional assumption of intersecting non-corresponding edges (“orthosecting tetrahedra”) implies that the six intersection points lie on a sphere. To a given tetrahedron there exists generally a one-parametric family of orthosecting tetrahedra. The orthographic projection of the locus of one vertex onto the corresponding face plane of the given tetrahedron is a curve which remains fixed under isogonal conjugation. This allows the construction of pairs of conjugate orthosecting tetrahedra to a given tetrahedron.

MSC:

51M04 Elementary problems in Euclidean geometries
PDFBibTeX XMLCite
Full Text: arXiv