zbMATH — the first resource for mathematics

The global stability of Minkowski space-time in harmonic gauge. (English) Zbl 1192.53066
This paper considers the question of stability of Minkowski space-time for the system of the Einstein-scalar field equations
\[ R_{\mu\nu}-\frac12g_{\mu\nu}R=T_{\mu\nu}.\tag{\(*\)} \] The equations connect the gravitational tensor \(G_{\mu\nu}=R_{\mu\nu}-\frac12g_{\mu\nu}\) given in terms of the Ricci tensor \(R_{\mu\nu}\) and the scalar curvature \(R=g^{\mu\nu}R_{\mu\nu}\) of an unknown Lorentzian metric \(g_{\mu\nu}\) and the energy-momentum tensor \(T_{\mu\nu}\) of a matter field \(\psi\) given by \(T_{\mu\nu}=\partial_\mu\psi \partial_\nu\psi-\frac12g_{\mu\nu}\left(g^{\alpha\beta}\partial_\alpha\psi \partial_\beta\psi\right)\). In the problem of stability of Minkowski space, using the Cauchy formulation of the Einstein equations for a \(3\)-dimensional manifold \(\Sigma_0\) with a Riemannian metric \(g_ 0\), a symmetric \(2\)-tensor \(k_ 0\), and the initial data \((\psi_0,\psi_ 1)\) for the scalar field, it is needed to find a \(4\)-dimensional manifold \(M\) with a Lorentzian metric \(g\) and a scalar field \(\psi\) satisfying the Einstein equations \((*)\), an embedding \(\Sigma_ 0\subset M\) such that \(g_ 0\) is the restriction of \(g\) to \(\Sigma_ 0\), \(k_ 0\) is the second fundamental form of \(\Sigma_ 0\), and the restriction of \(\psi\) to \(\Sigma_ 0\) gives rise to the data \((\psi_0,\psi_ 1)\).
The authors present a new proof of the global stability of Minkowski space for the Einstein-vacuum equations established in the work [Princeton Mathematical Series. 41. Princeton, NJ: Princeton University Press (1993; Zbl 0827.53055)] of D. Christodoulou and S. Klainerman for strongly asymptotic initial data. The new approach, relying on the classical harmonic gauge, shows that the Einstein-vacuum and the Einstein-scalar field equations with asymptotically flat initial data satisfying a global smallness condition produce global causally geodesically complete solutions asymptotically convergent to the Minkowski space-time.

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
35Q99 Partial differential equations of mathematical physics and other areas of application
83C99 General relativity
Zbl 0827.53055
Full Text: DOI arXiv Link
[1] S. Alinhac, ”Rank 2 singular solutions for quasilinear wave equations,” Internat. Math. Res. Notices, iss. 18, pp. 955-984, 2000. · Zbl 0971.35053
[2] S. Alinhac, ”The null condition for quasilinear wave equations in two space dimensions I,” Invent. Math., vol. 145, iss. 3, pp. 597-618, 2001. · Zbl 1112.35341
[3] S. Alinhac, ”An example of blowup at infinity for a quasilinear wave equation,” Astérisque, vol. 284, pp. 1-91, 2003. · Zbl 1053.35097
[4] L. Blanchet, ”Gravitational radiation from post-Newtonian sources and inspiralling compact binaries,” Living Reviews in Relativity, vol. 5, 2002. · Zbl 1023.83001
[5] L. Blanchet and T. Damour, ”Hereditary effects in gravitational radiation,” Phys. Rev. D, vol. 46, iss. 10, pp. 4304-4319, 1992.
[6] Y. Choquet-Bruhat, ”Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires,” Acta Math., vol. 88, pp. 141-225, 1952. · Zbl 0049.19201
[7] Y. Choquet-Bruhat, ”Un théorème d’instabilité pour certaines équations hyperboliques non linéaires,” C. R. Acad. Sci. Paris Sér. A-B, vol. 276, p. a281-a284, 1973. · Zbl 0245.35058
[8] <a href=’http://dx.doi.org/10.1002/(SICI)1521-3889(200005)9:3/53.3.CO;2-P’ title=’Go to document’> Y. Choquet-Bruhat, ”The null condition and asymptotic expansions for the Einstein equations,” Ann. Phys., vol. 9, iss. 3-5, pp. 258-266, 2000. · Zbl 0973.83018
[9] Y. Choquet-Bruhat and R. Geroch, ”Global aspects of the Cauchy problem in general relativity,” Comm. Math. Phys., vol. 14, pp. 329-335, 1969. · Zbl 0182.59901
[10] D. Christodoulou, ”Global solutions of nonlinear hyperbolic equations for small initial data,” Comm. Pure Appl. Math., vol. 39, iss. 2, pp. 267-282, 1986. · Zbl 0612.35090
[11] D. Christodoulou, ”The global initial value problem in general relativity,” in The Ninth Marcel Grossmann Meeting, Gurzadyan, V. G. and Jansen, R. T., Eds., River Edge, NJ: World Sci. Publ., 2002, pp. 44-54. · Zbl 1032.83014
[12] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton, NJ: Princeton Univ. Press, 1993. · Zbl 0827.53055
[13] P. T. Chruściel and E. Delay, ”Existence of non-trivial, vacuum, asymptotically simple spacetimes,” Classical Quantum Gravity, vol. 19, iss. 9, p. l71-l79, 2002. · Zbl 1005.83009
[14] J. Corvino, ”Scalar curvature deformation and a gluing construction for the Einstein constraint equations,” Comm. Math. Phys., vol. 214, iss. 1, pp. 137-189, 2000. · Zbl 1031.53064
[15] V. Fock, The Theory of Space, Time and Gravitation, New York: The Macmillan Co., 1964. · Zbl 0112.43804
[16] H. Friedrich, ”On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure,” Comm. Math. Phys., vol. 107, iss. 4, pp. 587-609, 1986. · Zbl 0659.53056
[17] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, London: Cambridge Univ. Press, 1973. · Zbl 0265.53054
[18] L. Hörmander, ”The lifespan of classical solutions of nonlinear hyperbolic equations,” in Pseudodifferential Operators, New York: Springer-Verlag, 1987, vol. 1256, pp. 214-280. · Zbl 0632.35045
[19] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, New York: Springer-Verlag, 1997, vol. 26. · Zbl 0881.35001
[20] L. Hörmander, ”On the fully nonlinear Cauchy problem with small data. II,” in Microlocal Analysis and Nonlinear Waves, New York: Springer-Verlag, 1991, vol. 30, pp. 51-81. · Zbl 0783.35036
[21] F. John, ”Blow-up for quasilinear wave equations in three space dimensions,” Comm. Pure Appl. Math., vol. 34, iss. 1, pp. 29-51, 1981. · Zbl 0453.35060
[22] F. John, ”Blow-up of radial solutions of \(u_{tt}=c^2(u_t)\Delta u\) in three space dimensions,” Mat. Apl. Comput., vol. 4, iss. 1, pp. 3-18, 1985. · Zbl 0597.35082
[23] F. John, ”Blow-up of solutions of nonlinear wave equations in three space dimensions,” Manuscripta Math., vol. 28, iss. 1-3, pp. 235-268, 1979. · Zbl 0406.35042
[24] F. John and S. Klainerman, ”Almost global existence to nonlinear wave equations in three space dimensions,” Comm. Pure Appl. Math., vol. 37, iss. 4, pp. 443-455, 1984. · Zbl 0599.35104
[25] S. Klainerman, ”Long time behaviour of solutions to nonlinear wave equations,” in Proceedings of the International Congress of Mathematicians, Warsaw, 1984, pp. 1209-1215. · Zbl 0581.35052
[26] S. Klainerman, ”The null condition and global existence to nonlinear wave equations,” in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Providence, RI: Amer. Math. Soc., 1986, vol. 23, pp. 293-326. · Zbl 0599.35105
[27] S. Klainerman and F. Nicolò, The Evolution Problem in General Relativity, Boston, MA: Birkhäuser, 2003. · Zbl 1010.83004
[28] S. Klainerman and F. Nicolò, ”Peeling properties of asymptotically flat solutions to the Einstein vacuum equations,” Classical Quantum Gravity, vol. 20, iss. 14, pp. 3215-3257, 2003. · Zbl 1045.83016
[29] H. Lindblad, ”On the lifespan of solutions of nonlinear wave equations with small initial data,” Comm. Pure Appl. Math., vol. 43, iss. 4, pp. 445-472, 1990. · Zbl 0719.35005
[30] H. Lindblad, ”Global solutions of nonlinear wave equations,” Comm. Pure Appl. Math., vol. 45, iss. 9, pp. 1063-1096, 1992. · Zbl 0840.35065
[31] H. Lindblad, ”Blow-up for solutions of \(\square u=| u| ^p\) with small initial data,” Comm. Partial Differential Equations, vol. 15, iss. 6, pp. 757-821, 1990. · Zbl 0712.35018
[32] H. Lindblad and I. Rodnianski, ”The weak null condition for Einstein’s equations,” C. R. Math. Acad. Sci. Paris, vol. 336, iss. 11, pp. 901-906, 2003. · Zbl 1045.35101
[33] H. Lindblad and I. Rodnianski, ”Global existence for the Einstein vacuum equations in wave coordinates,” Comm. Math. Phys., vol. 256, iss. 1, pp. 43-110, 2005. · Zbl 1081.83003
[34] W. Shu, ”Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space,” Comm. Math. Phys., vol. 140, iss. 3, pp. 449-480, 1991. · Zbl 0735.53060
[35] R. Schoen and S. T. Yau, ”On the proof of the positive mass conjecture in general relativity,” Comm. Math. Phys., vol. 65, iss. 1, pp. 45-76, 1979. · Zbl 0405.53045
[36] R. M. Wald, General Relativity, Chicago, IL: University of Chicago Press, 1984. · Zbl 0549.53001
[37] E. Witten, ”A new proof of the positive energy theorem,” Comm. Math. Phys., vol. 80, iss. 3, pp. 381-402, 1981. · Zbl 1051.83532
[38] N. Zipser, ”The global nonlinear stability of the trivial solution of the Einstein-Maxwell equations,” PhD Thesis , Harvard University, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.