zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A zero-dissipative Runge-Kutta-Nyström method with minimal phase-lag. (English) Zbl 1192.65105
Summary: An explicit Runge-Kutta-Nyström (RKN) method is developed for solving second-order differential equations of the form $q^{\prime\prime}=f(t,q)$ where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the precision and effectiveness of the method developed.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
WorldCat.org
Full Text: DOI EuDML
References:
[1] P. Pokorny, “Continuation of periodic solutions of dissipative and conservative systems: application to elastic pendulum,” Mathematical Problems in Engineering, vol. 2009, Article ID 104547, 15 pages, 2009. · Zbl 05632432
[2] H. Van de Vyver, “A symplectic Runge-Kutta-Nyström method with minimal phase-lag,” Physics Letters A, vol. 367, no. 1-2, pp. 16-24, 2007. · Zbl 1209.65075 · doi:10.1016/j.physleta.2007.02.066
[3] T. E. Simos, “New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation,” Physica Scripta, vol. 55, no. 6, pp. 644-650, 1997.
[4] H. Van de Vyver, “A 5(3) pair of explicit Runge-Kutta-Nyström methods for oscillatory problems,” Mathematical and Computer Modelling, vol. 45, no. 5-6, pp. 708-716, 2007. · Zbl 1165.65368 · doi:10.1016/j.mcm.2006.07.016
[5] J. M. Franco, “A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators,” Journal of Computational and Applied Mathematics, vol. 161, no. 2, pp. 283-293, 2003. · Zbl 1037.65073 · doi:10.1016/j.cam.2003.03.002
[6] P. J. van der Houwen and B. P. Sommeijer, “Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions,” SIAM Journal on Numerical Analysis, vol. 24, no. 3, pp. 595-617, 1987. · Zbl 0624.65058 · doi:10.1137/0724041
[7] J. D. Lambert and I. A. Watson, “Symmetric multistep methods for periodic initial value problems,” IMA Journal of Applied Mathematics, vol. 18, no. 2, pp. 189-202, 1976. · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[8] H. Hairer and G. Wanner, “A theory for Nyström methods,” Numerische Mathematik, vol. 25, no. 4, pp. 383-400, 1975. · Zbl 0307.65053
[9] J. R. Dormand, Numerical Methods for Differential Equations, Library of Engineering Mathematics, CRC Press, Boca Raton, Fla, USA, 1996. · Zbl 0847.65046
[10] M. P. Calvo and J. M. Sanz-Serna, “The development of variable-step symplectic integrators, with application to the two-body problem,” SIAM Journal on Scientific Computing, vol. 14, no. 4, pp. 936-952, 1993. · Zbl 0785.65083 · doi:10.1137/0914057
[11] A. García, P. Martín, and A. B. González, “New methods for oscillatory problems based on classical codes,” Applied Numerical Mathematics, vol. 42, no. 1-3, pp. 141-157, 2002. · Zbl 0998.65069 · doi:10.1016/S0168-9274(01)00147-7
[12] E. Stiefel and D. G. Bettis, “Stabilization of Cowell’s method,” Numerische Mathematik, vol. 13, no. 2, pp. 154-175, 1969. · Zbl 0219.65062 · doi:10.1007/BF02163234 · eudml:131907
[13] J. M. Franco and M. Palacios, “High-order P-stable multistep methods,” Journal of Computational and Applied Mathematics, vol. 30, no. 1, pp. 1-10, 1990. · Zbl 0726.65091 · doi:10.1016/0377-0427(90)90001-G
[14] H. Van De Vyver, “A Runge-Kutta-Nyström pair for the numerical integration of perturbed oscillators,” Computer Physics Communications, vol. 167, no. 2, pp. 129-142, 2005. · Zbl 1196.65116 · doi:10.1016/j.cpc.2004.12.011
[15] P. J. van der Houwen and B. P. Sommeijer, “Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems,” SIAM Journal on Numerical Analysis, vol. 26, no. 2, pp. 414-429, 1989. · Zbl 0676.65072 · doi:10.1137/0726023