×

A secure and scalable group key exchange system. (English) Zbl 1192.68237

Summary: We present a Group Key Exchange protocol which extends in a natural way the Diffie-Hellman protocol. Our protocol is scalable: it has two rounds (for \(n>2\) parties) and the number of modular exponentiations per user is constant. It is secure against a passive adversary if the Diffie-Hellman problem is intractable.

MSC:

68P25 Data encryption (aspects in computer science)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bellare, M.; Rogaway, P., Entity authentication and key distribution, (Proc. Crypto ’93. Proc. Crypto ’93, Lecture Notes in Comput. Sci., vol. 773 (1994), Springer-Verlag: Springer-Verlag Berlin), 232-249 · Zbl 0870.94019
[2] Berlekamp, E. R., Factoring polynomials over large finite fields, Math. Comp., 24, 111, 713-735 (1970) · Zbl 0247.12014
[3] Bird, R.; Gopal, I.; Herzberg, A.; Janson, P.; Kutten, S.; Molva, R.; Yung, M., Systematic design of two-party authentication protocols, (Proc. Crypto ’91. Proc. Crypto ’91, Lecture Notes in Comput. Sci., vol. 576 (1992), Springer-Verlag: Springer-Verlag Berlin), 44-61
[4] Blundo, C.; De Santis, A.; Herzberg, A.; Kutten, S.; Vaccaro, U.; Yung, M., Perfectly-secure key distribution for dynamic conferences, (Proc. Crypto ’92. Proc. Crypto ’92, Lecture Notes in Comput. Sci., vol. 740 (1993), Springer-Verlag: Springer-Verlag Berlin), 471-486 · Zbl 0816.94014
[5] Boneh, D.; Franklin, M., Identity-based encryption from the Weil pairing, (Proc. Crypto 2001. Proc. Crypto 2001, Lecture Notes in Comput. Sci., vol. 2139 (2001), Springer-Verlag: Springer-Verlag Berlin), 213-229 · Zbl 1002.94023
[6] Boyd, C.; Nieto, J. M.G., Round-optimal contributory conference key agreement, (Proc. PKC 2003. Proc. PKC 2003, Lecture Notes in Comput. Sci., vol. 2567 (2003), Springer-Verlag: Springer-Verlag Berlin), 161-174 · Zbl 1033.94512
[7] Burmester, M.; Desmedt, Y., A secure and efficient conference key distribution system, (Pre-proceedings of Eurocrypt ’94 (9-12 May 1994), Scuola Superiore Guglielmo Reiss Romoli (SSGRR): Scuola Superiore Guglielmo Reiss Romoli (SSGRR) Perugia, Italy), 279-290
[8] Burmester, M.; Desmedt, Y., A secure and efficient conference key distribution system, (Proc. Eurocrypt ’94. Proc. Eurocrypt ’94, Lecture Notes in Comput. Sci., vol. 950 (1995), Springer-Verlag: Springer-Verlag Berlin), 275-286 · Zbl 0879.94021
[9] Bresson, E.; Chevassut, O.; Pointcheval, D., Group Diffie-Hellman key exchange under standard assumptions, (Proc. Eurocrypt 2001. Proc. Eurocrypt 2001, Lecture Notes in Comput. Sci., vol. 2045 (2002), Springer-Verlag: Springer-Verlag Berlin), 321-336 · Zbl 1055.94009
[11] Diffie, W.; Hellman, M. E., New directions in cryptography, IEEE Trans. Inform. Theory, IT-22, 6, 644-654 (1976) · Zbl 0435.94018
[12] van Oorschot, P. C.; Diffie, W.; Wiener, M. J., Authentication and authenticated key exchanges, Des. Codes Cryptogr., 2, 107-125 (1992)
[13] Fischer, M. J.; Wright, R. N., Multiparty secret key exchange using a random deal of cards, (Proc. Crypto ’91. Proc. Crypto ’91, Lecture Notes in Comput. Sci., vol. 576 (1992), Springer-Verlag: Springer-Verlag Berlin), 141-155 · Zbl 0763.94010
[14] Goldwasser, S.; Micali, S.; Rackoff, C., The knowledge complexity of interactive proof systems, SIAM J. Comput., 18, 1, 186-208 (1989) · Zbl 0677.68062
[15] Ingemarsson, I.; Tang, D. T.; Wong, C. K., A conference key distribution system, IEEE Trans. Inform. Theory, 28, 5, 714-720 (1982) · Zbl 0488.94021
[16] Joux, A., A one round protocol for tripartite Diffie-Hellman, (Proc. ANTS-4. Proc. ANTS-4, Lecture Notes in Comput. Sci., vol. 1838 (2000), Springer-Verlag: Springer-Verlag Berlin), 385-393 · Zbl 1029.94026
[17] Joux, A., The Weil and Tate pairings as building blocks for public key cryptosystems, (Proc. ANTS-5. Proc. ANTS-5, Lecture Notes in Comput. Sci., vol. 2369 (2002), Springer-Verlag: Springer-Verlag Berlin), 20-32 · Zbl 1072.14028
[18] Katz, J.; Yung, M., Scalable protocols for authenticated group key exchange, (Proc. Crypto 2003. Proc. Crypto 2003, Lecture Notes in Comput. Sci., vol. 2729 (2003), Springer-Verlag: Springer-Verlag Berlin), 110-125 · Zbl 1122.94426
[20] Koyama, K.; Ohta, K., Identity-based conference key distribution systems, (Proc. Crypto ’87. Proc. Crypto ’87, Lecture Notes in Comput. Sci., vol. 293 (1988), Springer-Verlag: Springer-Verlag Berlin), 175-185
[21] Maurer, U.; Wolf, S., Diffie-Hellman oracles, (Proc. Crypto ’96. Proc. Crypto ’96, Lecture Notes in Comput. Sci., vol. 1109 (1996), Springer-Verlag: Springer-Verlag Berlin), 268-282 · Zbl 1329.94072
[22] Menezes, A.; van Oorschot, P. C.; Vanstone, S. A., Handbook of Applied Cryptography (1997), CRC Press: CRC Press Boca Raton, FL · Zbl 0868.94001
[23] Rabin, M., Probabilistic algorithms in finite fields, SIAM J. Comput., 9, 2, 273-280 (1980) · Zbl 0461.12012
[24] Schneier, B., Applied Cryptography (1996), John Wiley & Sons · Zbl 0853.94001
[27] Steiner, M.; Tsudik, G.; Waidner, M., Key agreement in dynamic peer groups, IEEE Trans. Parallel Distrib. Systems, 11, 8, 769-780 (2000)
[28] Sadeghi, A.-R.; Steiner, M., Assumptions related to discrete logarithms: why subtleties make a real difference, (Proc. Eurocrypt 2001. Proc. Eurocrypt 2001, Lecture Notes in Comput. Sci., vol. 2045 (2001), Springer), 244-260 · Zbl 0981.94018
[30] Yacobi, Y.; Shmuely, Z., On key distribution systems, (Proc. Crypto ’89. Proc. Crypto ’89, Lecture Notes in Comput. Sci., vol. 435 (1990), Springer-Verlag: Springer-Verlag Berlin), 344-355 · Zbl 0724.68031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.