×

zbMATH — the first resource for mathematics

Categorified symplectic geometry and the classical string. (English) Zbl 1192.81208
Summary: A Lie 2-algebra is a ‘categorified’ version of a Lie algebra: that is, a category equipped with structures analogous to those of a Lie algebra, for which the usual laws hold up to isomorphism. In the classical mechanics of point particles, the phase space is often a symplectic manifold, and the Poisson bracket of functions on this space gives a Lie algebra of observables. Multisymplectic geometry describes an \(n\)-dimensional field theory using a phase space that is an ‘\(n\)-plectic manifold’: a finite-dimensional manifold equipped with a closed nondegenerate \((n+1)\)-form. Here we consider the case \(n=2\). For any 2-plectic manifold, we construct a Lie 2-algebra of observables. We then explain how this Lie 2-algebra can be used to describe the dynamics of a classical bosonic string. Just as the presence of an electromagnetic field affects the symplectic structure for a charged point particle, the presence of a \(B\) field affects the 2-plectic structure for the string.

MSC:
81S10 Geometry and quantization, symplectic methods
53D05 Symplectic manifolds (general theory)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aschieri P., Cantini L., Jurčo B.: Nonabelian bundle gerbes, their differential geometry and gauge theory. Commun. Math. Phys. 254, 367–400 (2005) · Zbl 1092.53020
[2] Aschieri P., Jurčo B.: Gerbes, M5-brane anomalies and E 8 gauge theory. J. High Energy Phys. 10, 068 (2004)
[3] Baez J.: Higher-dimensional algebra II: 2-Hilbert spaces. Adv. Math. 127, 125–189 (1997) · Zbl 0896.18001
[4] Baez, J., Baratin, A., Freidel, L., Wise, D.: Representations of 2-groups on higher Hilbert spaces. http://arxiv.org/abs/0812.4969v1 , 2008 · Zbl 1342.18008
[5] Baez J., Crans A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004) · Zbl 1057.17011
[6] Baez J., Crans A., Stevenson D., Schreiber U.: From loop groups to 2-groups. Homology, Homotopy Appl. 9, 101–135 (2007) · Zbl 1122.22003
[7] Baez J., Lauda A.: Higher-dimensional algebra V: 2-groups. Theory Appl. Categ. 12, 423–491 (2004) · Zbl 1056.18002
[8] Baez, J., Schreiber, U.: Higher gauge theory. In: Davydov, A. et al (eds.) Categories in Algebra, Geometry and Mathematical Physics. Contemp. Math. 431, Providence, RI: Amer. Math. Soc., 2007, pp. 7–30 · Zbl 1132.55007
[9] Bartels, T.: Higher gauge theory: 2-bundles. http://arxiv.org/abs/math/0410328v3 , 2006
[10] Breen L., Messing W.: Differential geometry of gerbes. Adv. Math. 198, 732–846 (2005) · Zbl 1102.14013
[11] Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhauser, Boston (1993) · Zbl 0823.55002
[12] Cantrijn F., Ibort A., De Leon M.: On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. Ser. A 66, 303–330 (1999) · Zbl 0968.53052
[13] Cartin, D.: Generalized symplectic manifolds. http://arxiv.org/abs/dg-ga/9710027v2 , 1997
[14] Cariñena J.F., Crampin M., Ibort L.A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991) · Zbl 0782.58057
[15] DeDonder T.: Theorie Invariantive du Calcul des Variations. Gauthier–Villars, Paris (1935)
[16] Diaconescu, E., Moore, G., Freed, D.: The M-theory 3-form and E 8 gauge theory. In: Miller, H.R., Ravenel D.C. (eds.), Elliptic Cohomology. London Math. Soc. Lecture Note Ser. 342, Cambridge: Cambridge Univ. Press, 2007, pp. 44–88 · Zbl 1232.58016
[17] Freed D.: Higher algebraic structures and quantization. Commun. Math. Phys. 159, 343–398 (1994) · Zbl 0790.58007
[18] Freed D.: Dirac charge quantization and generalized differential cohomology. In: Yau, S.-T. (eds) Surveys in Differential Geometry VII, pp. 129–194. International Press, Somerville, MA (2000) · Zbl 1058.81058
[19] Freed D., Witten E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–851 (1999) · Zbl 1028.81052
[20] Gotay, M., Isenberg, J., Marsden, J., Montgomery, R.: Momentum maps and classical relativistic fields. Part I: covariant field theory. http://arxiv.org/abs/physics/9801019v2 , 2004
[21] Guillemin V., Sternberg S.: Symplectic Techniques in Physics. Cambridge U. Press, Cambridge (1984) · Zbl 0576.58012
[22] Hélein, F.: Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory. In: Bahri, A. et al, eds., Noncompact Problems at the Intersection of Geometry, Providence, RI: Amer. Math. Soc., 2001, pp. 127–148 · Zbl 1069.58011
[23] Hélein F., Kouneiher J.: The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables. Adv. Theor. Math. Phys. 8, 735–777 (2004) · Zbl 1113.70023
[24] Ibort, A.: Multisymplectic geometry: generic and exceptional. In: Grácia, X. et al, eds. Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltrú, 2000. Publicaciones de la RSME 3, Madrid: Real Sociedad Matemática Española, 2001, pp. 79–88 · Zbl 1066.53063
[25] Kanatchikov I.: Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41, 49–90 (1998) · Zbl 0947.70020
[26] Kalb M., Ramond P.: Classical direct interstring action. Phys. Rev. D 9, 2273–2284 (1974)
[27] Kijowski J.: A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys. 30, 99–128 (1973)
[28] Lada T., Stasheff J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087–1103 (1993) · Zbl 0824.17024
[29] Rovelli, C.: Covariant Hamiltonian formalism for field theory: Hamilton-Jacobi equation on the space G. http://arxiv.org/abs/gr-qc/0207043v2 , 2002
[30] Roytenberg, D.: On weak Lie 2-algebras. In: Kielanowski, P. et al, eds, XXVI Workshop on Geometrical Methods in Physics. AIP Conference Proceedings 956, Melville: American Institute of Physics, 2007, pp. 180–198 · Zbl 1168.81352
[31] Saunders, D.J.: The Geometry of Jet Bundles. London Math. Soc. Lecture Note Ser. 142, Cambridge: Cambridge U. Press, 1989 · Zbl 0665.58002
[32] Sati, H., Schreiber, U., Stasheff, J.: L algebra connections and applications to String- and Chern– Simons n-transport. http://arxiv.org/abs/0801.3480v2 , 2008 · Zbl 1183.83099
[33] Sati, H., Schreiber, U., Stasheff, J.: Fivebrane structures. http://arxiv.org/abs/0805.0564v3 , 2009 · Zbl 1202.81181
[34] Schreiber, U.: From Loop Space Mechanics to Nonabelian Strings. Ph.D. thesis, Universität Duisburg-Essen (2005); http://arxiv.org/abs/hep-th/0509163v1 , 2005
[35] Weyl H.: Geodesic fields in the calculus of variation for multiple integrals. Ann. Math. 36, 607–629 (1935) · Zbl 0013.12002
[36] Yetter D.: Measurable categories. Appl. Cat. Str. 13, 469–500 (2005) · Zbl 1105.18006
[37] Zunger, Y.: p-Gerbes and extended objects in string theory. http://arxiv.org/abs/hep-th/0002074v2 , 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.