[1] |
Feng, G.: Stability analysis of piecewise discrete-time linear systems, IEEE transactions on automatic control 47, No. 7, 1108-1112 (2002) |

[2] |
Gao, H.; Wang, C.; Wang, J.: A delay-dependent approach to robust H$\infty $filtering for uncertain discrete-time state-delayed systems, IEEE transactions on signal processing 52, No. 6, 1631-1640 (2004) |

[3] |
Kuang, Y.; Smith, H.; Martin, R.: Global stability for infinite-delay, dispersive Lotka-Volterra systems: weakly interacting populations in nearly identical patches, Journal of dynamics and differential equations 3, No. 3, 339-360 (1991) · Zbl 0731.92029
· doi:10.1007/BF01049736 |

[4] |
Liu, Y.; Wang, Z.; Liang, J.; Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE transactions on systems, man, and cybernetics - part B 38, No. 5, 1314-1325 (2008) |

[5] |
Veillette, R. J.; Medanic, J. V.; Perkins, W. R.: Design of reliable control systems, IEEE transactions on automatic control 37, 293-304 (1992) · Zbl 0745.93025
· doi:10.1109/9.119629 |

[6] |
Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust H$\infty $filtering for stochastic time-delay systems with missing measurements, IEEE transactions on signal processing 54, No. 7, 2579-2587 (2006) |

[7] |
Xu, J., & Xie, L. (2006). Non-synchronized H\infty estimation of piecewise linear systems. In: Proc. 1st IEEE conference on industrial electronics and applications, Singapore, May 2006 (pp. 1-6) |

[8] |
Yang, G. H.; Wang, J. L.; Soh, Y. C.: Reliable H$\infty $controller design for linear systems, Automatica 37, 717-725 (2001) · Zbl 0990.93029 |