zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
State estimation for linear discrete-time systems using quantized measurements. (English) Zbl 1192.93115
Summary: We consider the problem of state estimation for linear discrete-time dynamic systems using quantized measurements. This problem arises when state estimation needs to be done using information transmitted over a digital communication channel. We investigate how to design the quantizer and the estimator jointly. We consider the use of a logarithmic quantizer, which is motivated by the fact that the resulting quantization error acts as a multiplicative noise, an important feature in many applications. Both static and dynamic quantization schemes are studied. The results in the paper allow us to understand the tradeoff between performance degradation due to quantization and quantization density (in the infinite-level quantization case) or number of quantization levels (in the finite-level quantization case).

MSC:
93E10Estimation and detection in stochastic control
93C55Discrete-time control systems
93C05Linear control systems
WorldCat.org
Full Text: DOI
References:
[1] Anderson, B. D. O.; Moore, J. B.: Optimal filtering, (1979) · Zbl 0688.93058
[2] Baillieul, J.: Feedback designs in information-based control, , 35-57 (2001) · Zbl 1038.93055
[3] Brockett, R. W.; Liberzon, D.: Quantized feedback stabilization of linear systems, IEEE transactions on automatic control 45, No. 7, 1279-1289 (2000) · Zbl 0988.93069 · doi:10.1109/9.867021
[4] Carli, R., Fagnani, F., Frasca, P., & Zampieri, S. (2001). Efficient quantized techniques for consensus algorithms. NeCST Workshop, Nancy, France · Zbl 1214.93122
[5] Carli, R., Fagnani, F., Frasca, P., & Zampieri, S. (2008). A probabilistic analysis of the average consensus algorithm with quantized communication. In Proc. 17th IFAC world congress, Seoul, Korea · Zbl 1298.93314
[6] De Souza, C. E.; Xie, L.: On the discrete-time bounded real lemma with application in the characterization of static state feedback H$\infty $controller, Systems & control letters 18, 61-71 (1992) · Zbl 0743.93038 · doi:10.1016/0167-6911(92)90108-5
[7] Elia, E.; Mitter, K.: Stabilization of linear systems with limited information, IEEE transactions on automatic control 46, No. 9, 1384-1400 (2001) · Zbl 1059.93521 · doi:10.1109/9.948466 · http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=948466
[8] Epstein, M.; Shi, L.; Tiwari, A.; Murry, R.: Probabilistic performance of state estimation across a lossy network, Automatica 44, No. 12, 3046-3053 (2008) · Zbl 1153.93510 · doi:10.1016/j.automatica.2008.05.026
[9] Fu, M. (2008). Quantized linear quadratic Gaussian control. In Proc. 2009 american control conference
[10] Fu, M.; Xie, L.: The sector bound approach to quantized feedback control, IEEE transactions on automatic control 50, No. 11, 1698-1711 (2005)
[11] Fu, M.; Xie, L.: Finite-level quantized feedback control for linear systems, IEEE transactions on automatic control 54, No. 5, 1165-1170 (2009)
[12] Kalman, R. E.: Nonlinear aspects of sampled-data control systems, (1956) · Zbl 0081.34901
[13] Kushner, H.: Introduction to stochastic control, (1971) · Zbl 0293.93018
[14] Lewis, J. B.; Tou, J. T.: Optimum sampled-data systems with quantized control signals, Transactions AIEE 82, No. 2, 195-201 (1965)
[15] Matveev, A. S.; Savkin, A. V.: The problem of LQG optimal control via a limited capacity communication channel, Systems & control letters 53, 51-64 (2004) · Zbl 1157.93541 · doi:10.1016/j.sysconle.2004.02.021
[16] Nair, G. N.; Evans, R. J.: Stabilization with data-rate-limited feedback: tightest attainable bounds, Systems & control letters 41, 49-56 (2000) · Zbl 0985.93059 · doi:10.1016/S0167-6911(00)00037-2
[17] Packard, A.; Doyle, J. C.: Quadratic stability with real and complex perturbations, IEEE transactions on automatic control 35, No. 2, 198-201 (1990) · Zbl 0705.93060 · doi:10.1109/9.45179
[18] Tatikonda, S.; Mitter, S.: Control under communication constraints, IEEE transactions on automatic control 49, No. 7, 1056-1068 (2004)
[19] Tatikonda, S.; Sahai, A.; Mitter, S.: Stochastic linear control over a communication channel, IEEE transactions on automatic control 49, No. 9, 1549-1561 (2004)
[20] Tiwari, A., Jun, M., Jeffcoat, D., & Murray, R. (2005). Analysis of dynamic sensor coverage problem using Kalman filters for estimation. In Proc. 16th IFAC world congress, Prague, Czech Republic
[21] Tou, J. T.: Optimum design of digital control systems, (1963) · Zbl 0115.12503
[22] Widrow, B.: Statistical analysis of amplitude-quantized sampled-data systems, Transactions AIEE 79, No. 2, 555-567 (1961)
[23] Wong, W. S.; Brockett, R. W.: Systems with finite communication bandwidth constraints I: State estimation problems, IEEE transactions on automatic control 42, No. 9, 1294-1299 (1997) · Zbl 0952.93125 · doi:10.1109/9.623096
[24] Xiao, Nan; Xie, Lihua; Fu, Minyue: Kalman filtering over unreliable communication networks with bounded Markovian packet dropouts, International journal of robust and nonlinear control 19, No. 16, 1770-1786 (2009) · Zbl 1298.93334