zbMATH — the first resource for mathematics

Gems in experimental mathematics. AMS special session on experimental mathematics, Washington, DC, January 5, 2009. (English) Zbl 1193.00060
Contemporary Mathematics 517. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4869-2/pbk). vii, 413 p. (2010).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Almkvist, Gert, The art of finding Calabi-Yau differential equations. Dedicated to the 90-th birthday of Lars Gårding, 1-18 [Zbl 1213.34016]
Amdeberhan, Tewodros, A note on a question due to A. Garsia, 19-24 [Zbl 1209.05007]
Bailey, David H.; Borwein, Jonathan M., Experimental computation with oscillatory integrals, 25-40 [Zbl 1211.65028]
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Zudilin, Wadim, Experimental mathematics and mathematical physics, 41-58 [Zbl 1221.82006]
Boettner, Stefan T., An extension of the parallel Risch algorithm, 59-68 [Zbl 1222.26004]
Boyer, Robert P.; Goh, William M. Y., Appell polynomials and their zero attractors, 69-96 [Zbl 1209.05127]
Chan, O-Yeat; Manna, Dante, Congruences for Stirling numbers of the second kind, 97-111 [Zbl 1227.11044]
Coffey, Mark W., Expressions for harmonic number exponential generating functions, 113-125 [Zbl 1207.33011]
Crandall, Richard E., Theory of log-rational integrals, 127-142 [Zbl 1207.33004]
Garoufalidis, Stavros; Sun, Xinyu, A new algorithm for the recursion of hypergeometric multisums with improved universal denominator, 143-156 [Zbl 1207.33025]
Gonzalez, Ivan; Moll, Victor H.; Straub, Armin, The method of brackets. II: Examples and applications, 157-171 [Zbl 1207.33006]
Guillera, Jesús, History of the formulas and algorithms for \(\pi\), 173-188 [Zbl 1227.11003]
Guillera, Jesús, A matrix form of Ramanujan-type series for \(1/\pi\), 189-206 [Zbl 1207.33012]
Kohl, Karen; Stan, Flavia, An algorithmic approach to the Mellin transform method, 207-218 [Zbl 1207.44004]
Koutschan, Christoph, Eliminating human insight: An algorithmic proof of Stembridge’s TSPP theorem, 219-230 [Zbl 1209.05017]
Lapidus, Michel L.; Niemeyer, Robert G., Towards the Koch snowflake fractal billiard: computer experiments and mathematical conjectures, 231-263 [Zbl 1222.37028]
Medina, Luis A.; Zeilberger, Doron, An experimental mathematics perspective on the old, and still open, question of when to stop?, 265-273 [Zbl 1226.60058]
Mossinghoff, Michael J., The distance to an irreducible polynomial, 275-288 [Zbl 1227.11049]
Northshield, Sam, Square roots of \(2\times 2\) matrices, 289-304 [Zbl 1208.15015]
Oloa, Olivier, On a series of Ramanujan, 305-311 [Zbl 1213.33008]
Raff, Paul; Zeilberger, Doron, Finite analogs of Szemerédi’s theorem, 313-319 [Zbl 1283.11022]
Sills, Andrew V., Towards an automation of the circle method, 321-338 [Zbl 1223.11124]
Silverman, Joseph H., The greatest common divisor of \(a^n-1\) and \(b^n-1\) and the Ailon-Rudnick conjecture, 339-347 [Zbl 1222.11004]
Sondow, Jonathan; Schalm, Kyle, Which partial sums of the Taylor series for \(e\) are convergents to \(e\)? (and a link to the primes 2, 5, 13, 37, 463). II, 349-363 [Zbl 1227.11031]
Hillar, Christopher; García-Puente, Luis; del Campo, Abraham Martín; Ruffo, James; Teitler, Zach; Johnson, Stephen L.; Sottile, Frank, Experimentation at the frontiers of reality in Schubert calculus, 365-380 [Zbl 1213.14117]
Yang, Yifan; Zudilin, Wadim, On \(\mathrm{Sp}_4\) modularity of Picard-Fuchs differential equations for Calabi-Yau threefolds, 381-413 [Zbl 1283.11073]
00B25 Proceedings of conferences of miscellaneous specific interest
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14N15 Classical problems, Schubert calculus
37Dxx Dynamical systems with hyperbolic behavior
68R05 Combinatorics in computer science
Full Text: DOI