zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcations and chaos in fractional-order simplified Lorenz system. (English) Zbl 1193.34005
Summary: The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we numerically study the bifurcations and chaotic behaviors in the fractional-order simplified Lorenz system using the time-domain scheme. Chaos does exist in this system for a wide range of fractional orders, both less than and greater than three. Complex dynamics with interesting characteristics are presented by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent. Both the system parameter and the fractional order can be taken as bifurcation parameters, and the range of existing chaos is different for different parameters. The lowest order we found for this system to yield chaos is 2.62.

MSC:
34A08Fractional differential equations
34C23Bifurcation (ODE)
34C28Complex behavior, chaotic systems (ODE)
34D08Characteristic and Lyapunov exponents
Software:
FODE
WorldCat.org
Full Text: DOI