zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modelling a predator-prey system with infected prey in polluted environment. (English) Zbl 1193.34071
Summary: A predator-prey model with logistic growth in prey is modified by introducing an SIS parasite infection in the prey. We have studied the combined effect of environmental toxicant and disease on prey-predator system. It is assumed in this paper that the environmental toxicant affects both prey and predator population and the infected prey is assumed to be more vulnerable to the toxicant and predation compared to the sound prey individuals. Thresholds are identified which determine when system persists and disease remains endemic.

34C11Qualitative theory of solutions of ODE: growth, boundedness
92D25Population dynamics (general)
Full Text: DOI
[1] Zhien, Ma.; Jun, Song Bao; Hallam, T. G.: The threshold of survival for system in a fluctuating environment, Bull. math. Biol. 51, No. 3, 311-323 (1989) · Zbl 0676.92010
[2] Ma, Zhien; Hallam, T. G.: Effects of parameter fluctuations on community survival, Math. biosci. 86, 35-49 (1987) · Zbl 0631.92019 · doi:10.1016/0025-5564(87)90062-9
[3] Liu, Huaping; Ma, Zhien: The threshold of survival for system of two species in a polluted environment, J. math. Biol. 30, 49-61 (1990) · Zbl 0745.92028 · doi:10.1007/BF00168006
[4] Li, Zhan; Zhisheng, Shun; Wang, Ke: Persistence and extinction of single population in a polluted environment, Elect. J. Diff. eqs. 108, 1-5 (2004) · Zbl 1084.92032 · emis:journals/EJDE/Volumes/2004/108/abstr.html
[5] Curtis, H.: Invitation to biology, (1972)
[6] Sih, A.; Crowly, P.; Mcpeek, M.; Petranka, J.; Strohmeier, K.: Predation, competition and prey communities:a review of field experiments, Ann. rev. Ecol. semant. 16, 269-311 (1985)
[7] Holmes, J. C.; Bethel, W. M.: Modifications of intermediate host behaviour by parasites, Behavioral aspects of parasite transmission, suppl I to zool. 51, 123-149 (1972)
[8] Dobson, A. P.: The population of biology of parasite-induced changes in host behaviour, Quart. rev. Biol. 63, 139-165 (1988)
[9] Moore, J.: Parasites and the behaviour of animals, (2002)
[10] Chattopadhyay, J.; Arino, O.: A predator -- prey model with disease in prey, Nonlinear anal. 36, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[11] Arkoosh, M. R.; Casillas, E.; Clemons, E.; Kagley, Anna N.; Olson, R.; Reno, P.; Stein, John.: Effect of pollution on fish diseases: potential impacts on salmonid populations, J. aquat. Anim. health 10, 182-190 (1998)
[12] Hethcote, H. W.: Qualitative analysis of communicable disease models, Math. biosci. 28, 335-356 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[13] , Population biology of infectious diseases (1982)
[14] De Jong, M. C. M.; Diekmann, O.; Heesterbeek, J. A. P.: How does transmission depend on population size?, Human infectious diseases epidemic models, 84-94 (1995) · Zbl 0850.92042
[15] Hethcote, H. W.; Ma, Z.; Liao, Shengbing: Effects of quaratine in six epidemic models for infectious diseases, Math. biosci. 180, 141-160 (2002) · Zbl 1019.92030 · doi:10.1016/S0025-5564(02)00111-6
[16] Hethcote, H. W.; Wang, W.; Han, Litao; Ma, Zhien: A predator -- prey model with infected prey, Theor. popul. Biol. 66, 259-268 (2004)
[17] Thieme, H. R.: Convergence results and a Poincarè -- bendixon trichotomy for asymptotically autonomous differential equations, J. math. Biol. 30, 755-763 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
[18] Han, L.; Ma, Z.; Hethcote, H. W.: Four predator -- prey models with infectious diseases, Math. comp. Modell. 34, 849-858 (2001) · Zbl 0999.92032 · doi:10.1016/S0895-7177(01)00104-2
[19] Hutson, V.: A theorem on average Liapunov function, Monatsh. math. 98, 267 (1984) · Zbl 0542.34043 · doi:10.1007/BF01540776
[20] Thieme, H. R.: Persistence under relaxed point-dissipativity with application to an endemic model, SIAM J. Math. anal. 24, 407-435 (1993) · Zbl 0774.34030 · doi:10.1137/0524026