zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation criteria for second order quasi-linear neutral delay differential equations. (English) Zbl 1193.34137
Summary: Some new oscillation criteria for second order neutral nonlinear differential equation $[r(t)|(x(t)+p(t)x((\sigma (t))))'|m-1(x(t)+p(t)x((\sigma (t))))''+q(t)f(x(\tau (t)))=0$ are established. New oscillation criteria are different from most known ones in the sense that they are based on a class of new functions $\Phi (t,s,l)$ defined in the sequel.

MSC:
34K11Oscillation theory of functional-differential equations
34K40Neutral functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Erbe, L. H.: Oscillation criteria for second order nonlinear delay equation. Can. math. Bull. 16, 49-59 (1972) · Zbl 0296.34026
[2] Rogovchenko, Y. V.: On oscillation of second order nonlinear delay differential equation. Funkcial. ekvac. 43, 1-29 (2000) · Zbl 1142.34359
[3] Rogovchenko, Y. V.: Oscillation criteria for certain nonlinear differential equation. J. math. Anal. appl. 229, 399-416 (1999) · Zbl 0921.34034
[4] Li, H. J.; Yeh, C. C.: Oscillation criteria for second order neutral delay equations. Comput. math. Appl. 36, No. 10 -- 12, 123-132 (1998) · Zbl 0933.39027
[5] Grace, S. R.: Oscillation theorems for nonlinear differential equations of second order. J. math. Anal. appl. 171, 220-241 (1992) · Zbl 0767.34017
[6] El-Saved, M. A.: An oscillation criteria for a forced second order linear differential equation. Proc. amer. Math. soc. 24, 169-182 (1982)
[7] Kamenev, I. V.: An integral criterion of oscillation for linear differential equations of second order. Mat. zametki. 23, 249-251 (1978) · Zbl 0386.34032
[8] Philos, Gh.G.: Oscillation theorems for linear differential equations of second order. Arch. math. 53, 483-492 (1989) · Zbl 0661.34030
[9] Li, W. T.: Oscillation of certain second order nonlinear differential equations. J. math. Anal. appl. 217, 1-14 (1998) · Zbl 0893.34023
[10] Sun, Y. G.: New kamenev-type oscillation criteria for second order nonlinear differential equations with damping. J. math. Anal. appl. 291, 341-351 (2004) · Zbl 1039.34027
[11] Grammatikopoulos, M. K.; Ladays, G.; Meimaridou, A.: Oscillation of second order neutral delay differential equations. Rat. mat. 1, 267-274 (1985) · Zbl 0581.34051
[12] Ruan, S.: Oscillation of second order neutral delay differential equations. Can. math. Bull. 36, 485-496 (1993) · Zbl 0798.34079
[13] Li, H. J.; Liu, W. L.: Oscillation for second order neutral differential equations. Can. J. Math. 48, 871-886 (1996) · Zbl 0859.34055