zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation and nonoscillation criteria for linear dynamic systems on time scales. (English) Zbl 1193.34181
Summary: We establish oscillation and nonoscillation criteria for the linear dynamic system $u^{\Delta}=pv$, $v^{\Delta}=-qu^{\sigma}$. Here we assume that $p$ and $q$ are nonnegative, rd-continuous functions on a time scale $\bbfT$ such that $\sup\bbfT=\infty$. Indeed, we extend some known oscillation results for differential systems and difference systems to the so-called dynamic systems.

34N05Dynamic equations on time scales or measure chains
34C05Location of integral curves, singular points, limit cycles (ODE)
Full Text: DOI
[1] Bohner, M.; Peterson, A.: Dynamic equation on time scales, an introduction with application, (2001) · Zbl 0978.39001
[2] Mirzov, J. D.: On oscillation of solutions of a certain system of differential equations, Mat. zametki 23, No. 3, 401-404 (1978) · Zbl 0423.34047
[3] Mirzov, J. D.: Asymptotic behaviour of solutions of systems of nonlinear non-autonomous ordinary differential equations, Maikop (1993)
[4] Lomtatidze, A.; Partsvania, N.: Oscillation and nonoscillation criteria for two-dimensional systems of first order linear ordinary differential equations, Georgian math. J. 6, No. 3, 285-298 (1999) · Zbl 0930.34025 · doi:10.1023/A:1022187214750 · emis:journals/GMJ/vol6/contents.htm
[5] Li, W. T.: Classification schemes for nonoscillator solutions of two-dimensional nonlinear difference systems, Comput. math. Appl. 42, 341-355 (2001) · Zbl 1006.39013 · doi:10.1016/S0898-1221(01)00159-6
[6] Jiang, J.; Tang, X.: Oscillation criteria for two-dimensional difference systems of first order difference equations, Comput. math. Appl. 54, 808-818 (2007) · Zbl 1175.39004 · doi:10.1016/j.camwa.2006.12.051
[7] Erbe, L.; Peterson, A.: Oscillation criteria for second-order matrix dynamic equations on a time scale, J. comput. Appl. math. 141, 169-185 (2002) · Zbl 1017.34030 · doi:10.1016/S0377-0427(01)00444-7
[8] Xu, Y.; Xu, Z.: Oscillation criteria for two-dimensional dynamic systems on time scales, J. comput. Appl. math. 225, 9-19 (2009) · Zbl 1161.39012 · doi:10.1016/j.cam.2008.06.010
[9] Agarwal, R. P.; Bohner, M.: Basic calculus on time scales and some of its applications, Results math. 35, 3-22 (1999) · Zbl 0927.39003
[10] Bohner, M.; Peterson, A.: Advances in dynamic equation on time scales, (2003) · Zbl 1025.34001
[11] Gyori, I.; Ladas, G.: Oscillation theory of delay differential equations with applications, (1991) · Zbl 0780.34048