On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. (English) Zbl 1193.35100

This paper deals with the Strauss conjecture concerning the small data global existence in time for semilinear wave equations studied in the exterior domain \(\mathbb{R}_+\times\Omega\) of a compact obstacle \(\Omega\subset\mathbb{R}^n\setminus K\), \(K\)-compact, for space dimensions \(n= 3\) and \(n= 4\). The obstacle is nontrapping, the boundary condition on \(\mathbb{R}_+\times\partial\Omega\) is either Dirichlet or Neumann type and the nonlinear term \(F_p(u)\) behaves like \(|u|^p\) for \(|u|\) small. The authors formulate local energy decay assumptions Hyp. 1.1 for linear wave equations in the above-mentioned exterior domain and review some important cases when Hyp. 1.1 holds. The main existence result is given by Theorem 1.2. The key point in the proof of Theorem 1.2. is establishing an appropriate “abstract Strichartz estimates” for linear wave equations (see Theorem 1.4.). To do this the authors apply Hyp. 1.1, the global Minkowski abstract Strichartz estimates and the local abstract Strichartz estimates for \(\Omega\).


35L05 Wave equation
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
Full Text: DOI arXiv


[1] Ben M. Ben-Artzi: \em Regularity and smoothing for some equations of evolution, in “Nonlinear Partial Differential Equations and Applications” (H. Brezis and J. L. Lions, eds.), London, 1994, pp. 1-12. · Zbl 0823.35072
[2] BenK M. Ben-Artzi and S. Klainerman: \em Decay and regularity for the Schr\"odinger equation, J. Anal. Math. \bf 58 (1992), 25-37. · Zbl 0802.35057
[3] BSS M. D. Blair, H. F. Smith and C. D. Sogge: \em Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, to appear.
[4] burq N. Burq: \em Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge, Comm. Partial Differential Equations \bf 28 (2003), 1675-1683. · Zbl 1026.35020
[5] BLP N. Burq, G. Lebeau and F. Planchon: \em Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc. \bf 21 (2008), 831-845. · Zbl 1204.35119
[6] BP N. Burq and F. Planchon: \em Global existence for energy critical waves in 3-d domains: Neumann boundary conditions, Amer. J. Math., to appear.
[7] CK M. Christ and A. Kiselev: \em Maximal functions associated to filtrations, J. Funct. Anal. \bf 179 (2001), 409-425. · Zbl 0974.47025
[8] MSYYY. Du, J. Metcalfe, C. D. Sogge and Y. Zhou: \em Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in \(4\)-dimensions, Comm. Partial Differential Equations \bf 33 (2008), 1487-1506. · Zbl 1209.35083
[9] YY Y. Du and Y. Zhou: \em The life span for nonlinear wave equation outside of star-shaped obstacle in three space dimensions, Comm. Partial Differential Equations \bf 33 (2008), 1455-1486. · Zbl 1170.35065
[10] FW D. Fang and C. Wang: \em Weighted Strichartz Estimates with Angular Regularity and their Applications, arXiv:0802.0058. · Zbl 1226.35008
[11] GLS V. Georgiev, H. Lindblad, and C. D. Sogge: \em Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. \bf 119 (1997), 1291-1319. · Zbl 0893.35075
[12] Glassey R. T. Glassey: \em Existence in the large for \(\square u = F(u)\) in two dimensions, Math. Z. \bf 178 (1981), 233-261. · Zbl 0451.35039
[13] H K. Hidano: \em Morawetz-Strichartz estimates for spherically symmetric solutions to wave equations and applications to semi-linear Cauchy problems, Differential Integral Equations \bf 20 (2007), 735-754. · Zbl 1212.35036
[14] H2 K. Hidano: \em Small solutions to semi-linear wave equations with radial data of critical regularity, Rev. Mat. Iberoamericana, to appear.
[15] HosT. Hoshiro: \em On weighted \(L^2\) estimates of solutions to wave equations, J. Anal. Math. \bf 72 (1997), 127-140.
[16] John F. John: \em Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. \bf 28 (1979), 235-265. · Zbl 0406.35042
[17] KSS M. Keel, H. F. Smith, and C. D. Sogge: \em Almost global existence for some semilinear wave equations, J. Anal. Math. \bf 87 (2002), 265-279.
[18] KT M. Keel and T. Tao, \em Endpoint Strichartz estimates, Amer. J. Math. \bf 120 (1998), 955-980. · Zbl 0922.35028
[19] levine H. A. Levine, \em Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu\sbtt=-Au+\mathcal F(u)\), Trans. Amer. Math. Soc. \bf 192 (1974), 1-21. · Zbl 0288.35003
[20] LXT. T. Li and Y. Zhou: \em A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions, Indiana Univ. Math. J. \bf 44 (1995), 1207-1248. · Zbl 0851.35094
[21] LSH. Lindblad and C. D. Sogge: \em On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. \bf 130 (1995), 357-426.
[22] LS2H. Lindblad and C. D. Sogge: \em Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. \bf 118 (1996), 1047-1135. · Zbl 0869.35064
[23] Mel R. B. Melrose: \em Singularities and energy decay in acoustical scattering, Duke Math. J. \bf 46 (1979), 43-59.
[24] MelSj R. B. Melrose and J. Sj\"ostrand: \em Singularities of boundary value problems. I, Comm. Pure Appl. Math. \bf 31 (1978), 593-617. · Zbl 0368.35020
[25] MJ. Metcalfe: \em Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle, Trans. Amer. Math. Soc. \bf 356 (2004), 4839-4855. · Zbl 1060.35026
[26] mor C. S. Morawetz: \em Decay for solutions of the exterior problem for the wave equation, Comm. Pure and Appl. Math. \bf 28 (1975), 229-264.
[27] mrs C. S. Morawetz, J. Ralston and W. Strauss: \em Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. \bf 30 (1977), 87-133. · Zbl 0372.35008
[28] Lax P. D. Lax and R. S. Philips: Scattering Theory (Revised Edition), Academic Press, Inc., 1989.
[29] Ral J. Ralston: \em Note on the decay of acoustic waves, Duke Math. J. \bf 46 (1979), 799-804.
[30] ST Y. Shibata and Y. Tsutsumi: \em Global existence theorem for nonlinear wave equation in exterior domain, Lecture Notes in Num. Appl. Anal., Vol. 6 (1983), 155-196.
[31] Sideris T. C. Sideris: \em Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations \bf 52 (1984), 378-406. · Zbl 0555.35091
[32] SS0 H. F. Smith and C. D. Sogge: \em On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. \bf 8 (1995), 879-916. · Zbl 0860.35081
[33] SS H. F. Smith and C. D. Sogge: \em Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations \bf 25 (2000), 2171-2183. · Zbl 0972.35014
[34] SS2 H. F. Smith and C. D. Sogge: \em On the \(L\sp p\) norm of spectral clusters for compact manifolds with boundary, Acta Math. \bf 198 (2007), 107-153.
[35] So C. D. Sogge: Lectures on nonlinear wave equations, International Press, Boston, MA, 1995. · Zbl 1089.35500
[36] So2 C. D. Sogge: Lectures on nonlinear wave equations, 2nd edition, International Press, Boston, MA, 2008.
[37] Ta D. Tataru: \em Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc. \bf 353 (2001), 795-807.
[38] taylor M. Taylor: \em Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math. \bf 29 (1976), 1-38. · Zbl 0318.35009
[39] V B. R. Vainberg: \em The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as \(t\rightarrow \infty\) of the solutions of nonstationary problems, Russian Math. Surveys \bf 30 (1975), 1-58.
[40] Zhou Y. Zhou: \em Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Partial Differential Equations \bf 8 (1995), 135-144. \endthebibliography · Zbl 0836.35099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.