zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conservation laws for third-order variant Boussinesq system. (English) Zbl 1193.35104
Summary: The conservation laws for the variant Boussinesq system are derived by an interesting method of increasing the order of partial differential equations. The variant Boussinesq system is a third-order system of two partial differential equations. The transformations $u\rightarrow U_x, v\rightarrow V_x$ are used to convert the variant Boussinesq system to a fourth order system in $U,V$ variables. It is interesting that a standard Lagrangian exists for the fourth-order system. Noether’s approach is then used to derive the conservation laws. Finally, the conservation laws are expressed in the variables $u,v$ and they constitute the conservation laws for the third-order variant Boussinesq system. Infinitely many nonlocal conserved quantities are found for the variant Boussinesq system.

35L65Conservation laws
35B06Symmetries, invariants, etc. (PDE)
35Q35PDEs in connection with fluid mechanics
Full Text: DOI
[1] Naz, R.; Mason, D. P.; Mahomed, F. M.: Conservation laws and conserved quantities for laminar two-dimensional and radial jets, Nonlinear anal. RWA 10, 2641-2651 (2009) · Zbl 1177.35171 · doi:10.1016/j.nonrwa.2008.07.003
[2] Noether, E.: Invariante variationsprobleme, Nachr. könig. Gesell. wiss. Göttingen math.-phys. Kl. heft 2, 235-257 (1918) · Zbl 46.0770.01 · http://jfm.sub.uni-goettingen.de/JFM/digit.php?an=JFM+46.0770.01
[3] P.S. Laplace, Traité de Mécanique Céleste, vol. 1, Paris, 1798. English translation, Celestial Mechanics, New York, 1966.
[4] Steudel, H.: Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen, Z. naturforsch. A 17, 129-132 (1962)
[5] Olver, P. J.: Applications of Lie groups to differential equations, (1993) · Zbl 0785.58003
[6] Wolf, T.: A comparison of four approaches to the calculation of conservation laws, European J. Appl. math. 13, 129-152 (2002) · Zbl 1002.35008 · doi:10.1017/S0956792501004715
[7] Kara, A. H.; Mahomed, F. M.: Relationship between symmetries and conservation laws, Int. J. Theor. phys. 39, 23-40 (2000) · Zbl 0962.35009 · doi:10.1023/A:1003686831523
[8] Kara, A. H.; Mahomed, F. M.: Noether-type symmetries and conservation laws via partial lagragians, Nonlinear dynam. 45, 367-383 (2006) · Zbl 1121.70014 · doi:10.1007/s11071-005-9013-9
[9] Naz, R.; Mahomed, F. M.; Mason, D. P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. math. Comput. 205, 212-230 (2008) · Zbl 1153.76051 · doi:10.1016/j.amc.2008.06.042
[10] Wang, M.: Solitary wave solutions for variant Boussinesq equations, Phys. lett. A 199, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[11] Fu, Z.; Liu, S.: New transformations and new approach to find exact solutions to nonlinear equations, Phys. lett. A 299, 507-512 (2002) · Zbl 0996.35044 · doi:10.1016/S0375-9601(02)00737-5
[12] Ali, A. H. A.; Soliman, A. A.: New exact solutions of some nonlinear partial differential equations, Int. J. Nonlinear sci. 5, 79-88 (2008)
[13] Yasar, Emrullah: Variational principles and conservation laws to the burridge--knopoff equation, Nonlinear dynam. 54, 307-312 (2008) · Zbl 1173.35667 · doi:10.1007/s11071-008-9330-x
[14] Bluman, G.: Use and construction of potential symmetries, Math. comput. Modelling 8, 1-14 (1993) · Zbl 0792.35008 · doi:10.1016/0895-7177(93)90211-G
[15] A.H. Bokhari, A.Y. Dweik, F.D. Zaman, A.H. Kara, F.M. Mahomed, Generalization of the double reduction theory, doi:10.1016/j.nonrwa.2010.02.2006. · Zbl 1201.35014
[16] Naz, R.; Mason, D. P.; Mahomed, F. M.: Conservation laws via the partial Lagrangian and group invariant solutions for radial and two-dimensional free jets, Nonlinear anal. RWA 10, 3457-3465 (2009) · Zbl 1269.76022